This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the
original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

e BLACK BORDERS

e TEXT CUT OFF AT TOP, BOTTOM OR SIDES

e FADED TEXT

e ILLEGIBLE TEXT

e SKEWED/SLANTED IMAGES

e COLORED PHOTOS

e BLACK OR VERY BLACK AND WHITE DARK PHOTOS

e GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

‘As rescanning documents will not correct images,
please do not report the images to the
Image Problems Mailbox.

EP 0702 815 B1

-

)

European Patent Office

Office européen des brevets (11) EP 0 702 81 5 B1
(12) EUROPEAN PATENT SPECIFICATION
(45) Date of publication and mention (51) Int. 1.7: GO6F 11/14
of the grant of the patent:
23.08.2000 Bulletin 2000/34 (86) International application number:
PCT/US94/06320

(21) Application number: 94921242.7
__ {87) International publication number:
(22) Date of filing: 02.06.1994 WO 94/29807 (22.12.1994 Gazette 1994/28)

(54) WRITE ANYWHERE FILE-SYSTEM LAYOUT _
ANORDNUNG EINES DATEISYSTEMS ZUM BESCHREIBEN BELIEBIGER BEREICHE

DISPOSITION D'UN SYSTEME DE FICHIERS A ECRITURE DANS UNE ZONE NON
PREDETERMINEE

(84) Designated Contracting States: » RAKITZIS, Byron
ATBECHDEDKESFRGBGRIEITLILUMCNL Moutain View, CA 94043 (US)
PT SE
(74) Representative:
(30) Priority: 03.06.1993 US 71643 Leeming, John Gerard
J.A. Kemp & Co.,
(43) Date of publication of application: 14 South Square,
27.03.1996 Bulletin 1996/13 Gray's Inn

London WC1R 5LX (GB)
(60) Divisional application:

99120949.5/1 003 103 (56) References cited:
EP-A- 0 359 384 EP-A- 0453 193
(73) Proprietor: US-A- 5 043 871 US-A- 5 043 876
Network Appliance, Inc. US-A-5 163 148

Sunnyvale, California 94089 (US)

B SRINIVASAN ET AL.: "Recoverable file system

(72) Inventors: for microprocessor systems”
= HITZ, David MICROPROCESSORS AND MICROSYSTEMS.,
Sunnyvale, CA 94086 (US) vol. 9, no. 4, May 1985, LONDON GB, pages 179-
- MALCOM, Michael 183, XP002031805
Los Altos, CA 94022 (US) - The Episode File System, USENIX, Winter 1992,
» LAV, James ' pp-43-59 by Sailesh Chutani et al.

Cupertino, CA 95014 (US)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give
notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
a written reasoned statement. It shall not be deemed to have been tiled until the opposition fee has been paid. (Art.
99(1) European Patent Convention). :

Primed by Xerox (1IK) Business Sarvices
2.16.7 (HRS)/3.6

(5= 4

1 EP 0 702 815 B1 2

Description

1. FIELD OF THE INVENTION

[0001} The present invention is related to the field of
methods and apparatus for maintaining a consistent filte
system and for creating read-only copies of the file sys-
tern.

2. BACKGROUND ART

[0002] All file systems must maintain consistency in
spite of system failure. A number of different consist-
ency techniques have been used in the prior art for this
purpose.

[0003]) One of the most difficult and time consuming
issues in managing any file server is making backups of
file data. Traditional solutions have been to copy the
data to tape or other off-line media. With some file sys-
tems, the file server must be taken off-line during the
backup process in order to ensure that the backup is
completely consistent. A recent advance in backup is
the ability to quickly "clone” {i.e., a prior art method for
creating a read-only copy of the file system on disk) a
file system, and perform a backup from the clone
instead of from the active file system. With this type of
file system, it allows the file server to remain on-line dur-
ing the backup.

File System Consistency

[0004] A prior art file system is disclosed by Chu-
tani, et al. in an article entitted The Episode File
System, USENIX, Winter 1992, at pages 43-59. The
article describes the Episode file system which is a file
system using meta-data (i.e., inode tables, directories,
bitmaps, and indirect blocks). It can be used as a stand-
alone or as a distributed file system. Episode supports a
plurality of separate file system hierarchies. Episode
refers to the plurality of file systems collectively as an
"aggregate”. In particular, Episode provides a clone of
each file system for slowly changing data.

{0005) In Episode, each logical file system contains
an "anode” table. An anode table is the equivalent of an
inode table used in file systems such as the Berkeley
Fast File System. it is a 252-byte structure. Anodes are
used to store all user data as well as meta-data in the
Episode file system. An anode describes the root direc-
tory of a file system including auxitiary files and directo-
ries. Each such file system in Episode is referred to as a
"fileset™. All data within a fileset is focatable by iterating
through the anode table and processing each file in
turn. Episode creates a read-only copy of a file system,
herein referred to as a "clone”, and shares data with the
active file system using Copy-On-Write (COW) tech-
niques.

[0006] Episode uses a logging technique to recover
a file system(s) after a system crashes. Logging

10

15

25

30

40

45

50

55

ensures that the file system meta-data are consistent. A
bitmap table comains information about whether each
block in the file system is allocated or not. Also, the bit-
map table indicates whether or not each block is logged.
All meta-data updates are recorded in a log "container”
that stores transaction log of the aggregate. The log is
processed as a circular buffer of disk blocks. The trans-
action logging of Episode uses logging techniques orig-
inally developed for databases to ensure file system
consistency. This technique uses carefully order writes
and a recovery program that are supplemented by data-
base techniques in the recovery program.

[0007) Other prior art systems including JFS of IBM
and VxFS of Veritas Corporation use various forms of
transaction logging to speed the recover process, but
still require a recovery process.

[0008) Another prior art method is called the
"ordered write” technique. it writes all disk blocks in a
carefully determined order so that damage is minimized
when a system failure occurs while performing a series
of related writes. The prior art attempts to ensure that
inconsistencies that occur are harmiess. For instance, a
few unused blocks or inodes being marked as allocated.
The primary disadvantage of this technique is that the
restrictions it places on disk order make it hard to
achieve high performance.

[0009) Yet another prior art system is an elaboration
of the second prior art method referred to as an
"ordered write with recovery” technique. In this method,
inconsistencies can be potentially harmful. However,
the order of writes is restricted so that inconsistencies
can be found and fixed by a recovery program. Exam-
ples of this method include the original UNIX file system
and Berkeley Fast File System (FFS). This technique
does reduce disk ordering sufficiently to eliminate the
performance penalty of disk ordering. Another disad-
vantage is that the recovery process is time consuming.
It typically is proportional to the size of the file system.
Therefore, for example, recovering a 5 GB FFS file sys-
tem requires an hour or more to perform.

File System Clones

[0010) Figure 1 is a prior art diagram for the Epi-
sode file system illustrating the use of copy-on-write
(COW) techniques for creating a fileset done. Anode
110 comprises a first pointer 110A having a COW bit
that is set. Pointer 110A references data block 114
directly. Anode 110 comprises a second pointer 1108
having a COW bit that is cleared. Pointer 110B of anode
references indirect block 112. Indirect block 112 com-
prises a pointer 112A that references data block 124
directly. The COW bit of pointer 112A is set. Indirect
block 112 comprises a second pointer 1128 that refer-
ences data block 126. The COW bit of pointer 112B is
cleared.

[0011) A clone anode 120 comprises a first pointer
120A that references data block 114. The COW bit of

3 EP 0 702 815 B1 4

pointer 120A is cleared. The second pointer 120B of
clone anode 120 references indirect block 122. The
COW bit of pointer 120B is cleared. In turn, indirect
block 122 comprises a pointer 122A that references
data block 124. The COW bit of pointer 122A is cleared.
[0012) As illustrated in Figure 1, every direct pointer
110A, 112A-1128, 120A, and 122A and indirect pointer
110B and 120B in the Episode file system contains a
COW bit. Blocks that have not been modified are con-
tained in both the active file system and the done, and
have set (1) COW bits. The COW bit is cleared (0) when
a block that is referenced to by the pointer has been
modified and, therefore, is part of the active file system
but not the clone.

[0013) When a copy-on-write block is modified, as
shown in Figure 1, a new block is allocated and
updated. The COW flag in the pointer to this new block
is then set. The COW bit of pointer 110A of original
anode 110 is cleared. Thus, when the clone anode 120
is created, pointer 120A of clone anode 120 references
data block 114 also. Both original anode 110 and clone
anode 120 reference data block 114. Data block 124
has aiso been modified as indicated by a cleared COW
bit of pointer 112A in original indirect block 112. Thus,
when the clone anode is created, indirect block 122 is
created. Pointer 122A of indirect block 122 references
data block 124, and the COW bit of pointer 122A is
cleared. Both indirect block 122 of the original anode
110 and indirect block 122 of clone anode 120 reference
data block 124.

[0014] Figure 1 illustrates copying of an anode to
create a clone anode 120 for a single file. However,
clone anodes must be created for every file having
changed data blocks in the tile system. At the time of the
clone, all inodes must be copied. Creating clone anodes
for every modified file in the file system can consume
significant amounts of disk space. Further, Episode is
not capable of supporting multiple clones since each
pointer has only one COW bit. A single COW bit is not
able to distinguish more than one clone. For more than
one clone, there is not a second COW bit that can be
set.

[0015] A fileset "clone” is a read-only copy of an
active fileset wherein the active fileset is readable and
writable. Clones are implemented using COW tech-
niques, and share data blocks with an active fileseton a
block-by-block basis. Episode implements cloning by
copying each anode stored in a fileset. When initially
cloned, both the writable anode of the active fileset and
the cloned anode both point to the same data block(s).
However, the disk addresses for direct and indirect
blocks in the original anode are tagged as COW. Thus,
an update to the writable fileset does not affect the
clone. When a COW block is modified, a new block is
allocated in the file system and updated with the modifi-
cation. The COW flag in the pointer to this new block is
cleared

[0016) The prior art Episode system creates clones

30

35

40

45

50

55

that duplicate the entire inode file and all of the indirect
blocks in the tile system. Episode duplicates all inodes

"and indirect blocks so that it can set a Copy-On-Write

(COW) bit in all pointers to blocks that are used by both
the active file system and the clone. In Episode, it is
important to identify these blocks so that new data writ-
ten to the active file system does not overwrite "old”
data that is part of the clone and, therefore, must not
change.

[0017] Creating a clone in the prior art can use up
as much as 32 MB on a 1 GB disk The prior art uses
256 MB of disk space on a 1 GB disk (for 4 KB blocks)
to keep eight clones of the file system. Thus, the prior
art cannot use large numbers of clones to prevent loss
of data. Instead it used to facilitate backup of the file
system onto an auxiliary storage means other than the
disk drive, such as a tape backup device. Clones are
used to backup a file system in a consistent state at the
instant the clone is made. By cloning the file system, the
clone can be backed up to the auxiliary storage means
without shutting down the active file system, and
thereby preventing users from using the file system.
Thus, clones allow users to continue accessing an
active file system while the file system, in a consistent
state is backed up. Then the clone is deleted once the
backup is completed. Episcde is not capable of support-
ing multiple clones since each pointer has only one
COW bit. A single COW bit is not able to distinguish
more than one clone. For more than one clone, there is
no second COW bit that can be set.

[0018] A disadvantage of the prior art system for
creating file system clones is that it involves duplicating
all of the inodes and all of the indirect blocks in the file
system. For a system with many small files, the inodes
alone can consume a significant percentage of the total
disk space in a tile system. For example, a 1 GB file sys-
tem that is filled with 4 KB files has 32 MB of inodes.
Thus, creating an Episode clone consumes a significant
amount of disk space, and generates large amounts
(i.e., many megabytes) of disk trafiic. As a result of
these conditions, creating a clone of a file system takes
a significant amount of time o complete.

[0019]) Another disadvantage of the prior art system
is that it makes it difficult to create multiple clones of the
same file system. The result of this is that clones tend to
be used, one at a time, for short term operations such
as backing up the file system to tape, and are then
deleted.

[0020] The present invention, which is defined in
the amended claims, provides a method for maintaining
afile system in a consistent state and for creating read-
only copies of a file system. Changes to the file system
are tightly controlled to maintain the fite systemin a con-
sistent state. The file system progresses from one self-
consistent state to another self-consistent state. The set
of self-consistent blocks on disk that is rooted by the
root mode is referred to as a consistency point (CP). To
implement consistency points, WAFL always writes new

L3

5 EP 0 702 815 Bt 6

data to unallocated blocks on disk. It never overwrites
existing data. A new consistency point occurs when the
finsfo block is updated by writing a new root mode for
the mode file into it. Thus, as long as the root mode is
not updated, the state of the file system represented on
disk does not change.

[0021] The present invention also creates snap-
shots, which are virtual read-only copies of the file sys-
tem. A snapshot uses no disk space when it is initially
created. it is designed so that many different snapshots
can be created for the same file system. Unlike prior art
file systems that create a clone by duplicating the entire
mode file and all of the indirect blocks, the present
invention duplicates only the mode that describes the
mode file. Thus, the actual disk space required for a
snapshot is only the 128 bytes used to store the dupli-
cated mode. The 128 bytes of the present invention
required for a snapshot is significantly less than the
many megabytes used for a clone in the prior art.
[0022) The present invention prevents new data
written to the active file system from overwriting "old”
data that is part of a snapshol(s). It is necessary that old
data not be overwritten as long as it is part of a snap-
shot. This is accomplished by using a multi-bit free-
block map. Most prior art file systems use a free block
map having a single bit per block to indicate whether or
not a block is allocated. The present invention uses a
block map having 32-bit entries. A first bit indicates
whether a block is used by the active file system, and 20
remaining bits are used for up to 20 snapshots, how-
ever, some bits of the 31 bits may be used for other pur-
poses.

BRIEF DESCRIPTION OF THE DRAWING

[0023]

Figure 1 is a block diagram of a prior art "clone” of

afile system.

Figure 2 is a diagram illustrating a list of inodes hav-
ing dirty buffers.

Figure 3 is a diagram illustrating an on-disk inode of
WAFL.

Figures 4A-4D are diagrams #lustrating on-disk
inodes of WAFL having different levels of indirec-
tion.

Figure 5 is a flow diagram illustrating the method for
generating a consistency point.

Figure 6 is a flow diagram illustrating step 530 of
Figure 5 for generating a consistency point.

Figure 7 is a flow diagram illustrating step 530 of
Figure S for creating a snapshot.

10

15

25

30

40

45

55

Figure 8 is a diagram iflustrating an incore inode of
WAFL according to the present invention.

Figures 9A-9D are diagrams illustrating incore
inodes of WAFL having different levels of indirection
according to the present invention.

Figure 10 is a diagram illustrating an incore inode
1020 for a file. '

Figures 11A-11D are diagrams illustrating a block
map (blkmap) file according to the present inven-
tion.

Figure 12 is a diagram illustrating an inode file
according to the present invention.

Figures 13A-13B are diagrams illustrating an inode
map (inomap) tile according to the present inven-
tion.

Figure 14 is a diagram illustrating a directory
according to the present invention.

Figure 15 is a diagram illustrating a file system
information (fsinfo) structure.

Figure 16 is a diagram illustrating the WAFL file
system.

Figures 17A-17L are diagrams illustrating the gen-
eration of a consistency point.

Figures 18A-18C are diagrams illustrating genera-
tion of a snapshot.

Figure 19 is a diagram illustrating changes to an
inode file.

Figure 20 is a diagram illustrating fsinfo blocks used
for maintaining a file system in a consistent state.

Figures 21A-21F are detailed diagrams illustrating
generations of a snapshot.

Figure 22 is a diagram illustrating an active WAFL
tile system having three snapshots that each refer-
ence a common file; and,

Figures 23A-23B are diagrams illustrating the
updating of atime.

DETAILED DESCRIPTION OF THE PRESENT INVEN-
TION :

[0024] A system for creating read-only copies of a
file system is described. In the following description,
numerous specific details, such as number and nature

v

7 EP 0 702 815 B1 8

of disks, disk block sizes, etc., are described in detail in
order to provide a more thorough description of the
present invention. It will be apparent, however, to one
skdlled in the art, that the present invention may be prac-
ticed without these specific details. In other instances,
well-known features have not been described in detail
so as not to unnecessarily obscure the present inven-
tion.

WRITE ANYWHERE FILE-SYSTEM L AYOUT

[0025]) The present invention uses a Write Any-
where File-system Layout (WAFL). This disk format sys-
tem is block based (i.e., 4 KB biocks that have no
fragments), uses inodes to describe its files, and
includes directories that are simply specially formatted
files. WAFL uses files to store mesa-data that describes
the layout of the file system. WAFL meta-data files
include: an inode file, a block map (bllenap) file, and an
mode map (inomap) file. The inode file contains the
inode table for the file system. The blkmap file indicates
which disk blocks are allocated. The inomap file indi-
cates which inodes are allocated. On-disk and incore
WAFL inode distinctions are discussed below.

On-Disk WAFL Inodes

[0026]) WAFL inodes are distinct from prior art
modes. Each on-disk WAFL inode points to 16 blocks
having the same level of indirection. A block number is
4-bytes long. Use of block numbers having the same
level of indirection in an inode better facilitates recursive
processing of a file. Figure 3 is a block diagram illustrat-
ing an on-disk inode 310. The on-diskinode 310 is com-
prised of standard inode information 310A and 16 block
number entries 310B having the same level of indirec-
tion. The mode information 310A comprises information
about the owner of a file, permissions, file size, access
time, etc. that are well-known to a person skilled in the
art. On-disk mode 310 is unlike prior art inodes that
comprise a plurality of block numbers having different
levels of indirection. Keeping all block number entries
310B in an inode 310 at the same level of indirection
simplifies file system implementation.

[0027) For a small file having a size of 64 bytes or
less, data is stored directly in the inode itself instead of
the 16 block numbers. Figure 4A is a diagram illustrating
a Level 0 inode 410 that is similar to inode 310 shown in
Figure 3. However, inode 410 comprises 64-bytes of
data 410B instead of 16 block numbers 310B. There-
fore, disk blocks do not need to be allocated for very
small files.

[0028} For a file having a size of less than 64 KB,
each of the 16 block numbers directly references a 4 KB
data block. Figure 4B is a diagram illustrating a Level 1
inode 310 comprising 16 block numbers 310B. The
block number entries 0-15 point to corresponding 4 KB
data blocks 420A-420C.

15

25

30

40

45

50

[0029) For a file having a size that is greater than or
equal to 64 KB and is less than 64 MB, each of the 16
block numbers references a single-indirect block. In
turn, each 4 KB single-indirect block comprises 1024
block numbers that reference 4 KB data blocks. Figure
4C is a diagram illustrating a Level 2 inode 310 compris-
ing 16 block numbers 310B that reference 16 single-
indirect blocks 430A-430C. As shown in Figure 4C,
block number entry O points to single-indirect block
430A. Single-indirect block 430A comprises 1024 block
numbers that reference 4 KB data blocks 440A-440C.
Similarly, single-indirect blocks 430B-430C can each
address up to 1024 data blocks.

{0030] For afile size greater tan 64 MB, the 16 block
numbers of the inode reference double-indirect blocks.
Each 4 KB double-indirect block comprises 1024 block
numbers pointing to corresponding single-indirect
blocks. In turn, each single-indirect block comprises
1024 block numbers that point to 4KB data blocks.
Thus, up to 64 GB canbe addressed. Figure 4D is a dia-
gram illustrating a Level 3 inode 310 comprising 16
block numbers 310B wherein block number entries 0, 1,
and 15 reference double-indirect blocks 470A, 470B,
and 470C, respectively. Double-indirect block 470A
comprises 1024 block number entries 0-1023 that point
to 1024 single-indirect blocks 480A-480B. Each single-
indirect block 480A-480B, in turn, references 1024 data
blocks. As shown in Figure 4D, single-indirect block
480A references 1024 data blocks 490A-490C and sin-
gle-indirect block 480B references 1024 data blocks
490C-490F

Incore WAFL Inodes

[0031] Figure 8 is a block diagram illustrating an
incore WAFL inode 820. The incore inode 820 com-
prises the information of on-disk inode 310 (shown in
Figure 3), a WAFL buffer data structure 820A, and 16
buffer pointers 820B. A WAFL incore inode has a size of
300 bytes. A WAFL buffer is an incore (in memory) 4 KB
equivalent of the 4 KB blocks that are stored on disk.
Incore inode 820 is unlike prior art inodes that reference
bufters having different levels of indirection. Each incore
WAFL inode 820 points to 16 buffers having the same
level of indirection. A buffer pointer is 4-bytes long.
Keeping all buffer pointers 820B in an inode 820 at the
same level of indirection simplifies file system imple-
mentation. Incore inode 820 also contains incore infor-
mation 820C comprising a dirty flag, an in-consistency
point (IN_CP) flag, and pointers for a linked list. The
dirty flag indicates that the inode itself has been modi-
fied or that it references buffers that have changed. The
IN_CP flag is used to mark an inode as being in a con-
sistency point (described below). The pointers for a
linked list are described below.

[0032] Figure 10 is a diagram illustrating a file refer-
enced by a WAFL inode 1010. The file comprises indi-
rect WAFL buffers 1020-1024 and direct WAFL buffers

<A

9 EP 0 702 815 B1 10

1030-1034. The WAFL in-core inode 1010 comprises
standard inode information 1010A (including a count of
dirty buffers), a WAFL buffer data structure 10108, 16
buffer pointers 1010C and a standard on-disk inode
1010D. The in-core WAFL inode 1010 has a size of
approximately 300 bytes. The on-disk inode is 128
bytes in size. The WAFL buffer data structure 10108
comprises two pointers where the first one references
the 16 butfer pointers 1010C and the second references
the on-disk block numbers 1010D.

[0033] Each inode 1010 has a count of dirty buffers
that it references. An inode 1010 can be put in the list of
dirty inodes and/or the list of inodes that have dirty buff-
ers. When all dirty buffers referenced by an inode are
either scheduled to be written to disk or are written to
disk, the count of dirty buffers to inode 1010 is set to
zero. The inode 1010 is then requeued according to its
flag (i.e., no dirty buffers). This mode 1010 is cleared
before the next inode is processed. Further the flag of
the inode indicating that it is in a consistency point is
cleared. The inode 1010 itself is written to disk in a con-
sistency point.

[0034] The WAFL buffer structure is illustrated by
indirect WAFL buffer 1020. WAFL buffer 1020 com-
prises a WAFL buffer data structure 1020A, a 4 KB
buffer 1020B comprising 1024 WAFL butffer pointers
and a 4 KB buffer 1020C comprising 1024 on-disk block
numbers. The WAFL buffer data structure is 56 bytes in
size and comprises 2 pointers. One pointer of WAFL
buffer data structure 1020A references 4 KB buffer
10208 and a second pointer references buffer 1020C. In
Figure 10, the 16 buffer pointers 1010C of WAFL inode
1010 point to the 16 single-indirect WAFL buffers 1020-
1024. In turn, WAFL buffer 1020 references 1024 direct
WAFL buffer structures 1030-1034. WAFL buffer 1030
is representative direct WAFL buffers.

[0035) Direct WAFL buffer 1030 comprises WAFL
bufter data structure 1030A and a 4 KB direct buffer
10308 containing a cached version of a corresponding
on-disk 4 KB data block. Direct WAFL butfer 1030 does
not comprise a 4 KB buffer such as buffer 1020C of indi-
rect WAFL butfer 1020. The second buffer pointer of
WAFL buffer data structure 1030A is zeroed, and there-
fore does not point to a second 4 KB buffer. This pre-
vents inefficient use of memory because memory space
would be assigned for an unused buffer otherwise.
[0036] In the WAFL file system as shown in Figure
10, a WAFL in-core mode structure 1010 references a
tree of WAFL buffer structures 1020-1024 and 1030-
1034. it is similar to a tree of blocks on disk referenced
by standard inodes comprising block numbers that
pointing to indirect and/or direct blocks. Thus, WAFL
inode 1010 contains not only the on-disk inode 1010D
comprising 16 volume block numbers, but also com-
prises 16 buffer pointers 1010C pointing to WAFL buffer
structures 1020-1024 and 1030-1034. WAFL buffers
1030-1034 contain cached contents of blocks refer-
enced by volume block numbers.

10

15

20

25

30

35

40

55

{0037} The WAFL in-code inode 1010 contains 16
bufter pointers 1010C. In turn, the 16 buffer pointers
1010C are referenced by a WAFL buffer structure
1010B that roots the tree of WAFL buffers 1020-1024
and 1030-1034. Thus, each WAFL mode 1010 contains
a WAFL buffer structure 1010B that points to the 16
buffer pointers 1010C in the inode 1010. This facilitates
algorithms for handling trees of buffers that are imple-
mented recursively, if the 16 buffer pointers 1010C in
the inode 1010 were not represented by a WAFL buffer
structure 1010B, the recursive algorithms for operating
on an entire tree of butfers 1020-1024 and 1030-1034
would be difficult to implement.

[0038) Figures 9A-9D are diagrams illustrating
inodes having different levels of indirection. In Figures
9A-9D, simplified indirect and direct WAFL buffers are
illustrated to show indirection. However, it should be
understood that the WAFL buffers of Figure 9 represent
corresponding indirect and direct buffers of Figure 10.
For a small file having a size of 64 bytes or less, data is
stored directly in the inode itself instead of the 16 buffer
pointers. Figure 9A is a diagram illustrating a Level O
inode 820 that is the same as inode 820 shown in Fig-
ure 8 except that inode 820 comprises 64-bytes of data
920B instead of 16 buffer pointers 820B. Therefore,
additional buffers are not allocated for very small files.
[0039] For a file having a size of less than 64 KB,
each of the 16 buffer pointers directly references a 4 KB
direct WAFL buffer. Figure 9B is a diagram illustrating a
Level 1 inode 820 comprising 16 buffer pointers 820B.
The buffer pointers PTRO-PTR15 point to correspond-
ing 4 KB direct WAFL butfers 922A-922C.

[0040] For a file having a size that is greater than or
equal to 64 KB and is less than 64 MB, each of the 16
buffer pointers references a single-indirect WAFL buffer.
In turn, each 4 KB single-indirect WAFL buffer com-
prises 1024 buffer pointers tat reference 4 KB direct
WAFL buffers. Figure 9C is a diagram illustrating a Level
2 inode 820 comprising 16 buffer pointers 8208 that ref-
erence 16 single-indirect WAFL buffers 930A-930C. As
shown in Figure 9C, buffer pointer PTRO points to sin-
gle-indirect WAFL buffer 930A. Single-indirect WAFL
buffer 930A comprises 1024 pointers that reference 4
KB direct WAFL buffers 940A-940C. Similarly, single-
indirect WAFL buffers 930B-930C can each address up
to 1024 direct WAFL buffers.

[0041) For a file size greater than 64 MB, the 16
buffer pointers of the inode reference double-indirect
WAFL buffers. Each 4 KB double-indirect WAFL. buffer
comprises 1024 pointers pointing to corresponding sin-
gle-indirect WAFL buffers. In turn, each single-indirect
WAFL buffer comprises 1024 pointers that point to 4KB
direct WAFL buffers. Thus, up to 64 GB can be
addressed. Figure 9D is a diagram illustrating a Level 3
inode 820 comprising 16 pointers 820B wherein point-
ers PTRO, PTR1, and PTR15 reference double-indirect
WAFL butfers 970A, 970B, and 970C, respectively. Dou-
ble-indirect WAFL butfer 970A comprises 1024 pointers

1 EP 0 702 815 B1 12

that point to 1024 single-indirect WAFL buffers S80A-
980B. Each single-indirect WAFL buffer 980A-980B, in
turn, references 1024 direct WAFL buffers. As shown in
Figure 9D, single-indirect WAFL butfer 980A references
1024 direct WAFL buffers 990A-390C and single-indi-
rect WAFL buifer 980B references 1024 direct WAFL
buffers 990D-990F.

Directories

[0042] Directories in the WAFL system are stored in
4 KB blocks that are divided into two sections. Figure 14
is a diagram illustrating a directory block 1410 accord-
ing o the present invention. Each directory block 1410
comprises a first section 1410A comprising fixed length
directory entry structures 1412-1414 and a second sec-
tion 1410B containing the actual directory names 1416-
1418. Each directory entry also contains a file id and a
generation. This information identifies what file the entry
references. This information is well-known in the an,
and therefore is not illustrated in Figure 14. Each entry
1412-1414 in the first section 1410A of the directory
block has a pointer to its name in the second section
1410B. Further, each entry 1412-1414 includes a hash
value dependent upon its name in the second section
1410B so that the name is examined only when a hash
hit (a hash match) occurs. For example, entry 1412 of
the first section 1410A comprises a hash value 1412A
and a pointer 1412B. The hash value 1412A is a value
dependent upon the directory name
"DIRECTORY_ABC" stored in variable length entry
1416 of the second section 1410B. Pointer 1412B of
entry 1410 points to the variable length entry 1416 of
second section 1410B. Using fixed length directory
entries 1412-1414 in the first section 1410A speeds up
the process of name lookup. A calculation is not
required to find the next entry in a directory block 1410.
Further, keeping entries 1412-1414 in the first section
small 1410A improves the hit rate for file systems with a
line-fill data cache.

Meta-Data

[0043] WAFL keeps information that describes a file
system in files known as meta-data. Meta-data com-
prises an inode file, inomap file, and a blkmap file.
WAFL stores its meta-data in files that may be written
anywhere on a disk. Because all WAFL meta-data is
kept in files, it can be written to any location just like any
other file in the file system.

[00a43) An first meta-data file is the "inode file” that
contains modes describing all other files in the file sys-
tem. Figure 12 is a diagram illustrating an inode file
1210. The incde file 1210 may be written anywhere on
a disk unlike prior art systems that write "inode tables”
to a fixed location on disk. The inode file 1210 contains
an inode 1210A-1210F for each file in the file system
except for the inode file 1210 itself. The inode file 1210

10

15

30

35

50

55

is pointed to by an inode referred to as the "root inode™.
The root inode is kept in a fixed location on disk referred
to as the file system information (fsinfo) block described
below. The inode file 1210 itself is stored in 4 KB blocks
on disk (or 4 KB buffers in memory). Figure 12 illus-
trates that inodes 1210A-1210C are stored in a 4 KB
buffer 1220. For on-disk mode sizes of 128 bytes, a 4
KB butfer (or block) comprises 32 inodes. The incore
inode file 1210 is composed of WAFL buffers 1220.
When an incore inode (i.e., 1210A) is loaded, the on-
disk inode part of the incore inode 1210A is copied in for
the buffer 1220 of the inode file 1210. The butfer data
itselt is loaded from disk Writing data to disk is done in
the reverse order. The incore inode 1210A, which is a
copy of the ondisk inode, is copied to the corresponding
bufter 1220 of the inode file 1210. Then, the inode file
1210 is write-allocated, and the data stored in the buffer
1220 of the inode file 1210 is written to disk

[0045]} Another meta-data file is the "block map”
{(bikmap) file. Figure 11A is a diagram illustrating a blk-
map file 1110. The blkmap file 1110 contains a 32-bit
entry 1110A-1110C for each 4 KB block in the disk sys-
tem. it also serves as a free-block map file. The bikmap
tile 1110 indicates whether or not a disk block has been
allocated. Figure 11B is a diagram of a block entry
1110A of blkmap file 1110 (shown in Figure 11A). As
shown in Figure 11B, entry 1110A is comprised of 32
bits (BITO-BIT31). Bit 0 (BITO) of entry 1110A is the
active file system bit (FS-BIT). The FS-bit of entry
1110A indicates whether or not the corresponding block
is part of the active file system. Bits 1-20 (BIT1-BIT20)
of entry 1110A are bits that indicate whether the block is
part of a corresponding snapshot 1-20. The next upper
10 bits (BIT21-BIT30) are reserved. Bit 31 (BIT31) is the
consistency point bit (CP-BIT) of entry 1110A.

[0046) A block is available as a free block in the file
system when all bits (BITO-BIT31) in the 32-bit entry
1110A for the block are clear (resetto a value of 0). Fig-
ure 11C is a diagram illustrating entry 1110A of Figure
11A indicating the disk block is free. Thus, the block ref-
erenced by entry 1110A of blkmap file 1110is free when
bits 0-31 (BIT0O-BIT31) all bave values of 0. Figure 11D
is a diagram illustrating entry 1110A of Figure 11A indi-
cating an allocated block in the active file system. When
bit 0 (BIT0), also referred to as the FS-bit, is set to a
value of 1, the entry 1110A of bllanap file 1110 indicates
a block that is part of the active file system. Bits 1-20
(BIT1-BIT20) are used to indicate corresponding snap-
shots, it any, that reference the block. Snapshots are
described in detail below. If bit 0 (BIT0) is set to a value
of 0, this does not necessarily indicate that the block is
available for allocation. All the snapshot bits must also
be zero for the block to be allocated. Bit 31 (BIT31) of
entry 1110A always has the same state as bit 0 (BiT0)
on disk, however, when loaded into memory bit 31
(BIT31) is used for bookkeeping as part of a consist-
ency point.

[0047) Another meta-data file is the "inode map”

13 EP 0 702 815 B1 14

(inomap) file that serves as a free inode map. Figure
13A is a diagram illustrating an inomap file 1310. The
inomap file 1310 contains an 8-bit entry 1310A-1310C
for each block in the inode file 1210 shown in Figure 12.
Each entry 1310A-1310C is a count of allocated inodes
in the corresponding block of the inode file 1210. Figure
13A shows values of 32, 5, and O in entries 1310A-
1310C, respectively. The inode file 1210 must still be
inspected to find which inodes in the block are free, but
does not require large numbers of random blocks to be
loaded into memory from disk. Since each 4 KB block
1220 of inode file 1210 holds 32 inodes, the 8-bit
inomap entry 1310A-1310C for each block of inode file
1210 can have values ranging from 0 to 32. When a
block 1220 of an inode file 1210 has no inodes in use,
the entry 1310A-1310C for #t in inomap file 1310 is 0.
When all the inodes in the block 1220 inode file 1210
are in use, the entry 1310A-1310C of the inomap file
1310 has a value of 32.

[0048] Figure 13B is a diagram illustrating an
inomap file 1350 that references the 4 KB blocks
1340A-1340C of inode file 1340. For example, inode file
1340 stores 37 inodes in three 4 KB blocks 1340A-
1340C. Blocks 1340A-1340C of inode file 1340 contain
32, 5, and 0 used modes, respectively. Entries 1350A-
1350C of blkmap file 1350 reference blocks 1340A-
1340C of inode file 1340, respectively. Thus, the entries
1350A-1350C of inomap file have values of 32, 5, and 0
for blocks 1340A-1340C of inode file 1340. In turn,
entries 1350A-1350C of inomap file indicate 0, 27, and
32 free modes in blocks 1340A-1340C of inode file
1340, respectively.

[0049]) Referring to Figure 13, using a bitmap for the
entries 1310A-1310C of inomap file 1310 instead of
counts is disadvantageous since it would require 4
bytes per entry 1310A-1310C for block 1220 of the
inode file 1210 (shown in Figure 12) instead of one byte.
Free inodes in the block(s) 1220 of the inode file 1210
do not need to be indicated in the inomap file 1310
because the inodes themselves contain that informa-
tion.

[0050]) Figure 15 is a diagram illustrating a file sys-
tem information (fsinfo) structure 1510. The root mode
1510B of a file system is kept in a fixed location on disk
so that it can be located during booting of the file sys-
tem. The fsinfo block is not a meta-data file but is part of
the WAFL system. The rootinode 1510B is an inode ref-
erencing the inode file 1210. it is part of the file system
information (fsinfo) structure 1510 that also contains
information 1510A including the number of blocks in the
file system, the creation time of the file system, etc. The
misceflaneous information 1510A further comprises a
checksum 1510C (described below). Except for the root
mode 1510B itself, this information 1510A can be kept
in a meta-data file in an alternate embodiment. Two
identical copies of the fsinfo structure 1510 are kept in
fixed locations on disk.

[0051} Figure 16 is a diagram illustrating the WAFL

15

20

25

30

40

45

50

55

file system 1670 in a consistent state on disk compris-
ing two fsinfo blocks 1610 and 1612, inode file 1620,
bikmap file 1630, inomap file 1640, root directory 1650,
and a typical file (or directory) 1660. Inode file 1620 is
comprised of a plurality of inodes 1620A-1620D that ref-
erence other files 1630-1660 in the file system 1670.
Inode 1620A of inode file 1620 references bikmap file
1630. Inode 1620B references inomap file 1640. Inode
1620C references root directory 1650. Inode 1620D ref-
erences a typical file (or directory) 1660. Thus, the
inode file points to all files 1630-1660 in the file system
1670 except for fsinfo blocks 1610 and 1612. Fsinfo
blocks 1610 and 1612 each contain a copy 1610B and
1612B of the inode of the inode file 1620, respectively.
Because the root inode 1610B and 1612B of fsinfo
blocks 1610 and 1612 describes the inode file 1620,
that in turn describes the rest of the files 1630-1660 in
the file system 1670 inducting all meta-data files 1630-
1640, the root inode 16108 and 1612B is viewed as the
root of a tree of blocks. The WAFL system 1670 uses
this tree structure for its update method (consistency
point) and for implementing snapshots, both described
below.

List of Inodes Having Dirty Blocks

[0052) WAFL in-core inodes (i.e., WAFL inode 1010
shown in Figure 10) of the WAFL file system are main-
tained in different linked lists according to their status.
Inodes that reference dirty blocks are kept in a dirty
inode list as shown in Figure 2. Inodes containing valid
data that is not dirty are kept in a separate list and
inodes that have no valid data are kept in yet another, as
is well-known in the art. The present invention utilizes a
list of inodes having dirty data blocks that facilitates find-
ing all of the modes that need write allocations to be
done.

[0053) Figure 2 is a diagram illustrating a list 210 of
dirty inodes according to the present invention. The list
210 of dirty inodes comprises WAFL in-core inodes
220-1750. As shown in Figure 17, each WAFL in-core
inode 220-250 comprises a pointer 220A-250A, respec-
tively, that points to another inode in the linked list. For
example, WAFL inodes 220-250 are stored in memory
at locations 2048, 2152, 2878, 3448 and 3712, respec-
tively. Thus, pointer 220A of inode 220 contains address
2152. i points therefore to WAFL inode 222. In turn,
WAFL inode 222 points to WAFL inode 230 using
address 2878. WAFL inode 230 points to WAFL inode
240. WAFL inode 240 points to inode 1750. The pointer
250A of WAFL inode 250 contains a null value and
therefore does not point to another inode. Thus, it is the
last mode in the list 210 of dirty inodes. Each inode in
the list 210 represents a file comprising a tree of buffers
as depicted in Figure 10. At least one of the butfers ref-
erenced by each inode 220-250 is a dirty buffer. A dirty
buffer contains modified data that must be written to a
new disk location in the WAFL system. WAFL always

15 EP 0 702 815 B1 16

writes dirty buffers to new locations on disk.

CONSISTENCY POINTS

[0054] The WAFL disk structure described so far is
static. In the present invention, changes to the file sys-
tem 1670 are tightly controlled to maintain the file sys-
tem 1670 in a consistentt state. The file system 1670
progresses from one self-consistent state to another
self-consistent state. The set (or tree) of self-consistent
blocks on disk that is rooted by the root inode 15108 is
referred to as a consistency point (CP). To implement
consistency points, WAFL always writes new data to
unallocated blocks on disk. It never overwrites existing
data. Thus, as long as the root inode 1510B is not
updated, the state of the file system 1670 represented
on disk does not change. However, for a file system
1670 to be usetul, it must eventually refer to newly writ-
ten data, therefore a new consistency point must be
written.

[0055) Referring to Figure 16, a new consistency
point is written by first flushing all file system blocks to
new locations on disk (including the blocks in meta-data
files such as the inode file 1620, blkmap file 1630, and
inomap fite 1640). A new root inode 1610B and 1612B
for the file system 1670 is then written to disk. With this
method for atomically updating a file system, the on-
disk file system is never inconsistent. The on-disk file
system 1670 reflects an old consistency point up until
the root inode 1610B and 16128 is written. Immediately
after the root inode 1610B and 1612B is written to disk,
the file system 1670 reflects a new consistency point.
Data structures of the file system 1670 can be updated
in any order, and there are no ordering constraints on
disk writes except the one requirement that all blocks in
the file system 1670 must be written 1o disk before the
root inode 1610B and 1612B is updated.

[0056) To convert to a new consistency point, the
root mode 1610B and 1612B must be updated reliably
and atomically. WAFL does this by keeping two identical
copies of the fsinfo structure 1610 and 1612 containing
the root inode 1610B and 1612B. During updating of the
root inode 1610B and 1612B, a first copy of the fsinfo
structure 1610 is written to disk, and then the second
copy of the fsinfo structure 1612 is written. A checksum
1610C and 1612C in the fsinfo structure 1610 and 1612,
respectively, is used to detect the occurrence of a sys-
temn crash that corrupts one of the copies of the fsinfo
structure 1610 or 1612, each containing a copy of the
root mode, as it is being writien to disk. Normally, the
two fsinfo structures 1610 and 1612 are identical.

Algorithm for Generating a Consistency Point

[0057] Figure 5 is a diagram iflustrating the method
of producing a consistency point. In step 510, all "dirty™
modes (inodes that point to new blocks containing mod-
ified data) in the system are marked as being in the con-

10

15

25

30

40

45

50

55

sistency point their contents, and only their contents,
are written to disk. Only when those writes are complete
are any writes from other inodes allowed to reach disk.
Further, during the time dirty writes are occurring, no
new modifications can be made to inodes that are in the
consistency point.

[0058] In addition to setting the consistency point
flag for all dirty modes that are part of the consistency
point, a global consistency point flag is set so that user-
requested changes behave in a tightly controlled man-
ner. Once the global consistency point flag is set, user-
requested changes are not allowed to affect inodes that
are in the consistency point Further, only inodes having
a consistency point flag that is set are allocated disk
space for their dirty blocks. Consequently, the state of
the file system will be flushed to disk exactly as it was
when the consistency point began.

[0059] In step 520, regular files are flushed to disk.
Flushing regular files comprises the steps of allocating
disk space for dirty blocks in the regular files, and writ-
ing the corresponding WAFL buffers to disk The inodes
themselves are then flushed (copied) to the inode file.
All inodes that need to be written are in either the list of
inodes having dirty buffers or the list of modes that are
dirty but do not have dirty buffers. When step 520 is
completed, there are no more ordinary inodes in the
consistency point, and all incoming IO requests suc-
ceed unless the requests use buffers that are still locked
up for disk /O operations.

[0060} In step 530, special files are flushed to disk.
Flushing special files comprises the steps of allocating
disk space for dirty blocks in the two special files: the
inode file and the blkmap file, updating the consistency
bit (CP-bit) to match the active file system bit (FS-bit) for
each entry in the blkmap file, and then writing the blocks
1o disk. Write allocating the inode file and the bikmap is
complicated because the process of write allocating
them changes the files themselves. Thus, in step 530
writes are disabled while changing these files to prevent
important blocks from locking up in disk VO operations
betore the changes are completed.

{0061} Also, in step 530, the creation and deletion
of snapshots, described below, are performed because
it is the only point in time when the file system, except
for the fsinfo block, is completely self consistent and
about to be written to disk. A snapshot is deleted from
the file system before a new one is created so that the
same snapshot inode can be used in one pass.

[0062} Figure 6 is a flow diagram illustrating the
steps that step 530 comprises. Step 530 allocates disk
space for the blkmap file and the mode file and copies
the active FS-bit into the CP-bit for each entry in the blk-
map file. In step 610, the inode for the bllkamap file is pre-
flushed to the inode file. This ensures that the block in
the inode file that contains the inode of the bikmap file is
dirty so that step 620 allocates disk space for it.

[0063]} In step 620, disk space is allocated for all
dirty blocks in the inode and blkmap files. The dirty

17 EP 0 702 815 B1 18

blocks include the block in the inode file containing the
inode of the blkmap file is dirty.

[0064) In step 630, the inode for the blkmap file is
flushed again, however this time the actual inode is writ-
ten to the pre-flushed block in the inode file. Step 610
has already dirtied the block of the mode file that con-
tains the mode of the blkmap file. Thus, another write-
allocate, as in step 620, does not need to be scheduled.
[0065]} In step 640, the entries for each block in the
bikmap file are updated. Each entry is updated by copy-
ing the active FS-bit to the CP-bit (i.e., copying bit O into
bit 31) for all entries in dirty blocks in the bikmap file.
[0066] In step 650, all dirty blocks in the blkmap and
inode files are written to disk.

[0067] Only entries in dirty blocks of the bikmap file
need to have the active file system bit (FS-bit) copied to
the consistency point bit (CP-bit) in step 640. Immedi-
ately after a consistency point, all bllkenap entries have
same value for both the active FS-bit and CP-bit. As
time progresses, some active FS-bits of blkmap file
entries for the file system are either cleared or set. The
blocks of the blkmap file cortaining the changed FS-bits
are accordingly marked dirty. During the following con-
sistency point, blocks that are clean do not need to be
re-copied. The clean blocks are not copied because
they were not dirty at the previous consistency point and
nothing in the blocks has changed since then. Thus, as
long as the file system is initially created with the active
FS-bit and the CP-bit having the same value in all bik-
map entries, only entries with dirty blocks need to be
updated at each consistency point.

[0068] Referring to Figure 5, in step 540, the file
system information (fsinfo) block updated and then
flushed to disk. The fsinfo block is updated by writing a
new root inode for the inode file into it. The fsinfo block
is written twice. It is first written to one location and then
to a second location. The two writes are performed so
that when a system crash occurs during either write, a
self-consistent file system exists on disk. Therefore,
either the new consistency point is available if the sys-
tem crashed while writing the second fsinfo block or the
previous consistency point (on disk before the recent
consistency point began) is available if the first fsinfo
block failed. When the file system is restarted after a
system failure, the highest generation count for a con-
sistency point in the fsinfo blocks having a correct
checksum value is used. This is described in detail
below.

[0069] In step 550, the consistency point is com-
pleted. This requires that any dirty inodes that were
delayed because they were not part of the consistency
point be requeued. Any inodes that had their state
change during the consistency point are in the consist-
ency point wait (CP_WAIT) queue. The CP_WAIT
queue holds inodes that changed before step 540 com-
pleted, but after step 510 when the consistency point
started. Once the consistency point is completed, the
modes in the CP_WAIT queue are re-queued accord-

15

25

30

40

45

50

55

10

ingly in the regular list of inodes with dirty buffers and list
of dirty inodes without dirty buffers.

Single Orderin i nsisten

{0070} The present invention, as illustrated in Fig-
ures 20A-20C, has a single ordering constraint. The sin-
gle ordering constraint is that the fsinfo block 1810 is
written to disk only after all the other blocks are written
to disk. The writing of the fsinfo block 1810 is atomic,
otherwise the entire file system 1830 could be lost.
Thus, the WAFL file system requires the fsinfo block
1810 to be written at once and not be in an inconsistent
state. As illustrated in Figure 15, each of the fsinfo
blocks 1810 (1510) contains a checksum 1510C and a
generation count 1510D.

[0071] Figure 20A illustrates the updating of the
generation count 1810D and 1870D of fsinfo blocks
1810 and 1870. Each time a consistency point (or snap-
shot) is performed, the generation count of the fsinfo
block is updated. Figure 20A illustrates two fsinfo biocks
1810 and 1870 having generation counts 1810D and
1870D, respectively, that have the same value of N indi-
cating a consistency point for the file system. Both fsinfo
blocks reference the previous consistency point (old file
system on disk) 1830. A new version of the file system
exists on disk and is referred to as new consistency
point 1831. The generation count is incremented every
consistency point

[0072]) In Figure 20B, the generation count 1810D
of the first fsinfo block 1810 is updated and given a
value of N+1. it is then written to disk. Figure 20B illus-
trates a value of N+1 for generation count 1810D of
fsinfo block 1810 whereas the generation count 1870D
of the second fsinfo block 1870 has a value of N. Fsinfo
block 1810 references new consistency point 1831
whereas fsinfo block 1870 references old consistency
point 1830. Next, the generation count 1870D of fsinfo
block 1870 is updated and written to disk as illustrated
in Figure 20C. In Figure 20C, the generation count
1870D of fsinfo block 1870 has a value of N+1. There-
fore the two fsinfo blocks 1810 and 1870 have the same
generation count value of N+1.

[0073} When a system crash occurs between fsinfo
block updates, each copy of the fsinfo block 1810 and
1870 will have a self consistent checksum (not shown in
the diagram), but one of the generation numbers 1810D
or 1870D will have a higher value. A system crash
occurs when the file system is in the state illustrated in
Figure 20B. For example, in the preferred embodiment
of the present invention as illustrated in Figure 20B, the
generation count 1810D of fsinfo block 1810 is updated
before the second fsinfo block 1870. Therefore, the gen-
eration count 1810D (value of one) is greater than the
generation count 1870D of fsinfo block 1870. Because
the generation count of the first fsinfo block 1810 is
higher, it is selected tor recovering the file system after
a system crash. This is done because the first fsinfo

19 EP 0 702 815 B1

block 1810 contains more current data as indicated by
its generation count 1810D. For the case when the first
tsinfo block is corrupted because the system crashes
while it is being updated, the other copy 1870 of the
fsinfo block is used to recover the file system 1830 into
a consistent state.

[0074) lt is not possible for both fsinfo blocks 1810
and 1870 to be updated at the same time in the present
invention. Therefore, at least one good copy of the fsinfo
block 1810 and 1870 exists in the file system. This
allows the file system to alsways be recovered into a
consistent state.

[0075} WAFL does not require special recovery pro-
cedures. This is unlike prior art systems that use log-
ging, ordered writes, and mostly ordered writes with
recovery. This is because only data cormruption, which
RAID protects against, or software can corrupt a WAFL
file system. To avoid losing data when the system fails,
WAFL may keep a non-volatile transaction log of all
operations that have occurred since the most recent
consistency point. This log is completely independent of
the WAFL disk format and is required only to prevent
operations from being lost during a system crash. How-
ever, it is not required to maintain consistency of the file
system.

Generating A Consistency Point

[0076]) As described above, changes to the WAFL
file system are tightly controlled to maintain the file sys-
tem in a consistent state. Figures 17A-17H illustrate the
generation of a consistency point for a WAFL file sys-
tem. The generation of a consistency point is described
with reference to Figures 5 and 6.

[0077] In Figures 17A-17L, buffers that have not
been modified do not have asterisks beside them.
Therefore, buffers contain the same data as corre-
sponding on-disk blocks. Thus, a block may be loaded
imo memory but it has not changed with respect to its
on disk version. A buffer with a single asterisk () beside
it indicates a dirty buffer in memory (its data is modi-
fied). A buffer with a double asterisk (**) beside it indi-
cates a dirty buffer that has been allocated disk space.
Finally, a buffer with a triple asterisk (***) is a dirty buffer
that is written into a new block on disk. This convention
for denoting the state of buffers is also used with respect
to Figures 21A-21E. :

[0078] Figure 17A illustrates a list 2390 of inodes
with dirty buffers comprising inodes 2306A and 2306B.
Inodes 2306A and 2306B reference trees of buffers
where at least one buffer of each tree has been modi-
fied. Initially, the consistency point flags 2391 and 2392
of inodes 2306A and 2306B are cleared (0). While a list
2390 of modes with dirty butfers is illustrated for the
present system, it should be obvious to a person skilled
in the art that other lists of inodes may exist in memory.
For instance, a list of inodes that are dirty but do not
have dirty buffers is maintained in memory. These

10

15

30

35

40

45

50

55

11

20

inodes must also be marked as being in the consistency
point. They must be flushed to disk also to write the dirty
contents of the inode file to disk even though the dirty
inodes do not reference dirty blocks. This is done in step
520 of Figure 5.

[0079] Figure 17B is a diagram illustrating a WAFL
file system of a previous consistency point comprising
fsinfo block 2302, inode file 2346, blkmap file 2344 and
files 2340 and 2342. File 2340 comprises blocks 2310-
2314 containing data "A”, "B", and "C", respectively. File
2342 comprises data blocks 2316-2320 comprising
data "D", "E", and "F", respectively. Blkmap file 2344
comprises block 2324. The inode file 2346 comprises
two 4KB blocks 2304 and 2306. The second block 2306
comprises inodes 2306A-2306C that reference file
2340, file 2342, and blkmap file 2344, respectively. This
is illustrated in block 2306 by listing the file number in
the inode. Fsinfo block 2302 comprises the root inode.
The root inode references blocks 2304 and 2306 of
inode file 2346. Thus, Figure 17B illustrates a tree of
buffers in a file system rooted by the fsinfo block 2302
containing the root inode.

[0080] Figure 17C is a diagram illustrating two mod-
ified butfers for blocks 2314 and 2322 in memory. The
active file system is modified so that the block 2314 con-
taining data "C" is deleted from file 2340. Also, the data
"F" stored in block 2320 is moditied to "F-prime”, and is
stored in a buffer for disk block 2322. It should be under-
stood that the modified data contained in butfers for disk
blocks 2314 and 2322 exists only in memory at this
time. All other blocks in the active file system in Figure
17C are not modified, and therefore have no asterisks
beside them. However, some or all of these blocks may
have corresponding clean buffers in memory.

[o081] Figure 17D is a diagram illustrating the
entries 2324A-2324M of the blkmap file 2344 in mem-
ory. Entries 2324A-2324M are contained in a buffer for 4
KB block 2324 of blkmap file 2344. As described previ-
ously, BITO and BIT31 are the FS-BIT and CP-BIT,
respectively. The consistency point bit (CP-BIT) is set
during a consistency point to ensure that the corre-
sponding block is not modified once a consistency point
has begun, but not finished. BIT1 is the first snapshot bit
(described below). Blkmap entries 2324A and 2324B
illustrate that, as shown in Figure 178, the 4 KB blocks
2304 and 2306 of inode file 2346 are in the active file
system (FS-BIT equal to 1) and in the consistency point
(CP-BIT equal to 1). Similarly, the other blocks 2310-
2312 and 2316-2320 and 2324 are in the active file sys-
tem and in the consistency point. However, blocks 2308,
2322, and 2326-2328 are neither in the active file sys-
tem nor in the consistency point (as indicated by BITO
and BIT31, respectively). The entry for deleted block
2314 has a.value of 0 in the FS-BIT indicating that it has
been removed from the active file system.

[0082) In step 510 of Figure 5, all "dirty” inodes in
the system are marked as being in the consistency
point. Dirty inodes include both inodes that are dirty and

21 EP 0 702 815 B1

inodes that reference dirty buffers. Figure 17| illustrates
a list of inodes with dirty buffers where the consistency
point flags 2391 and 2392 of inodes 2306A and 23068
are set (1). Inode 2306A references block 2314 contain-
ing data "C" of file 2340 which is to be deleted from the
active file system. Inode 2306B of block 2306 of inode
file 2346 references file 2342. Block 2320 containing
data "F" has been moditied and a new block containing
data "F" must be allocated. In step 510, the dirty inodes
2306A and 2306B are copied into the buffer for block
2308. The buffer for block 2306 is subsequently written
to disk (in step 530). This is illustrated in Figure 17E.
The modified data exists in memory only, and the buffer
2308 is marked dirty. The inconsistency point flags 2391
and 2392 of inodes 2306A and 2306B are then cleared
(0) as illustrated in Figure 17A. This releases the inodes
for use by other processes.

[0083] In step 520, regular files are flushed to disk.
Thus, block 2322 is allocated disk space. Block 2314 of
file 2340 is to be deleted, therefore nothing occurs to
this block until the consistency point is subsequently
completed. Block 2322 is written to disk in step 520.
This is illustrated in Figure 17F where buffers for blocks
2322 and 2314 have been written to disk (marked by
“**}. The intermediate allocation of disk space (**) is not
shown. The inodes 2308A and 23088 of block 2308 of
inode file 2346 are flushed to the inode file. Inode
2308A of block 2308 references blocks 2310 and 2312
of file 2346. Inode 2308B references blocks 2316, 2318,
2322 for file 2342. As illustrated in Figure 17F, disk
space is allocated for block 2308 of inode 2346 and for
direct block 2322 for file 2342. However, the file system
itself has not been updated. Thus, the file system
remains in a consistent state.

[0084] In step S30, the bllanap file 2344 is flushed
to disk. This is illustrated in Figure 17G where the blk-
map file 2344 is indicated as being dirty by the asterisk.
[0085] In step 610 of Figure 6, the inode for the bik-
map file is pre-flushed to the inode file as illustrated in
Figure 17H. Inode 2308C has been flushed to block
230B of inode file 2346. However, inode 2308C still ref-
erences block 2324. In step 620, disk space is allocated
for bikmap file 2344 and inode file 2346. Block 2308 is
allocated for inode file 2346 and block 2326 is allocated
for blkmap file 2344. As described above, block 2308 of
inode file 2346 contains a pre-flushed inode 2308C for
blkanap file 2344. In step 630, the inode for the blkmap
file 2344 is writiten 1o the pre-flushed block 2308C in
inode 2346. Thus, incore inode 2308C is updated to ref-
erence block 2324 in step 620, and is copied into the
buffer in memory containing block 2306 that is to be
written to block 2308. This is illustrated in Figure 17H
where inode 2308C references block 2326.

{0086} In step 640, the entries 2326A-2326L for
each block 2304-2326 in the blkmap file 2344 are
updated in Figure 17J. Blocks that have not changed
since the consistency point began in Figure 17B have
the same values in their entries. The entries are

10

15

25

30

40

45

50

55

12

22

updated by copying BITO (FS-bit) to the consistency
point bit (BIT31). Block 2306 is not part of the active file
system, therefore BITO is equal to zero (BITO was
turned off in step 620 when block 2308 was allocated to
hold the new data for that part of the inode file). This is
illustrated in Figure 17J for entry 2326B. Similarly, entry
2326F for block 2314 of file 2340 has BITO and BIT31
equal to zero. Block 2320 of file 2342 and block 2324 of
blkmap file 2344 are handled similarly as shown in
entries 2361 and 2326K, respectively. In step 650, dirty
block 2308 of inode file 2346 and dirty block 2326 of bik-
map file 2344 are written to disk This is indicated in Fig-
ure 17K by a triple asterisk (***) beside blocks 2308 and
2326.

[0087] Referring to Figure 5, in step 540, the file
system information block 2302 is flushed to digk, this is
performed twice. Thus, fsinfo block 2302 is dirtied and
then written to disk (indicated by a triple asterisk) in Fig-
ure 17L. In Figure 17L, a single fsinfo block 2302 is illus-
trated. As shown in the diagram, fsinfo block 2302 now
references block 2304 and 2308 of the inode file 2346.
In Figure 17L, bfock 2306 is no longer part of the inode
file 2346 in the active file system. Similarly, file 2340 ref-
erenced by inode 2308A of inode file 2346 comprises
blocks 2310 and 2312. Block 2314 is no longer part of
file 2340 in this consistency point. File 2342 comprises
blocks 2316, 2318, and 2322 in the new consistency
point whereas block 2320 is not part of file 2342. Fur-
ther, block 2308 of inode file 2346 references a new bik-
map file 2344 comprising block 2326.

[0088]} As shown in Figure 17L, in a consistency
point, the active file system is updated by copying the
inode of the inode file 2346 into fsinfo block 2302. How-
ever, the blocks 2314, 2320, 2324, and 2306 of the pre-
vious consistency point remain on disk. These blocks
are never overwritten when updating the file system to
ensure that both the old consistency point 1830 and the
new consistency point 1831 exist on disk in Figure 20
during step 540

SNAPSHOTS

{0089} The WAFL system supports snapshots. A
snapshot is a read-only copy of an entire file system at
a given instant when the snapshot is created. A newly
created snapshot refers to exactly the same disk blocks
as the active file system does. Therefore, it is created in
a smali period of time and does not consume any addi-
tional disk space. Only as data blocks in the active file
system are modified and written to new locations on
disk does the snapshaot begin to consume extra space.

[0090] WAFL supports up to 20 different snapshots
that are numbered 1 through 20. Thus, WAFL allows the
creation of multiple "clones” of the same file system.
Each snapshot is represented by a snapshot mode tatis
similar to the representation of the active file system by
a root inode. Snapshots are created by duplicating the
root data structure of the file system. In the preferred

23

embodiment, the root data structure is the root inode.
However, any data structure representative of an entire
tile system could be used. The snapshot inodes reside
in a fixed location in the inode file. The limit of 20 snap-
shots is imposed by the size of the bllamap entries.
WAFL requires two steps to create a new snapshot N:
copy the root inode into the inode for snapshot N; and,
copy bit 0 into bit N of each bikmap entry in the blkmap
file. Bit 0 indicates the blocks that are referenced by the
tree beneath the root inode.

[0091] The resultis a new file system tree rooted by
snapshot inode N that references exactly the same disk
blocks as the root inode. Setting a corresponding bit in
the blkmap for each block in the snapshot prevents
snapshot blocks from being freed even if the active file
no longer uses the snapshot blocks. Because WAFL
always writes new data to unused disk locations, the
snapshot tree does not change even though the active
file system changes. Because a newly created snap-
shot tree references exactly the same blocks as the root
inode, it consumes no additional disk space. Over time,
the snapshot references disk blocks that would other-
wise have been freed. Thus, over time the snapshot and
the active file system share fewer and fewer blocks, and
the space consumed by the snapshot increases. Snap-
shots can be deleted when they consume unacceptable
numbers of disk blocks.

[0092] The list of active snapshots along with the
names of the snapshots is stored in a meta-data file
called the snapshot directory. The disk state is updated
as described above. As with all other changes, the
update occurs by automatically advancing from one
consistency point to another. Modified blocks are written
to unused locations on the disk after which a new root
inode describing the updated file system is written.

Overview of Snapshots

[0093] Figure 18A is a diagram of the file system
1830, before a snapshot is taken, where levels of indi-
rection have been removed to provide a simpler over-
view of the WAFL file system. The file system 1830
represents the file system 1690 of Figure 16. The file
system 1830 is comprised of blocks 1812-1820. The
inode of the inode file is contained in fsinfo block 1810.
While a single copy of the fsinfo block 1810 is shown in
Figure 18A, it should be understood that a second copy
of fsinfo block exists on disk. The inode 1810A con-
tained in the fsinfo block 1810 comprises 16 pointers
that point to 16 blocks having the same level of indirec-
tion. The blocks 1812-1820 in Figure 18A represent all
blocks in the file system 1830 including direct blocks,
indirect blocks, etc. Though only five blocks 1812-1820
are shown, each block may point to other blocks.

[0094] Figure 18B is a diagram illustrating the crea-
tion of a snapshot. The snapshot is made for the entire
file system 1830 by simply copying the inode 1810A of
the inode fite that is stored in fsinfo block 1810 into the

EP 0 702 815 B1

10

15

25

30

35

40

55

13

24

snapshot inode 1822. By copying the inode 1810A of
the inode file, a new file of inodes is created represent-
ing the same file system as the active file system.
Because the inode 1810A of the inode file itself is cop-
ied. No other blocks 1812-1820 need to be duplicated.
The copied inode or snapshot inode 1822, is then cop-
ied into the inode file that dirties a block in the inode file.
For aninode file comprised of one or more levels of indi-
rection, each indirect block is in turn dirtied. This proc-
ess of dirtying blocks propagates through all the levels
of indirection. Each 4 KB block in the inode file on disk
contains 32 modes where each inode is 128 bytes long.
[0095] The new snapshot inode 1822 of figure 18B
points back to the highest level of indirection blocks
1812-1820 referenced by the inode 1810A of the inode
file when the snapshot 1822 was taken. The inode file
itself is a recursive structure because it contains snap-
shots of the file system 1830. Each snapshot 1822 is a
copy of the inode 1810A of the inode file that is copied
into the inode file.

[0096]) Figure 18C is a diagram illustrating the
active file system 1830 and a snapshot 1822 when a
change to the active file system 1830 subsequently
occurs after the snapshot 1822 is taken. As illustrated in
the diagram, block 1818 comprising data "D" is modified
after the snapshot was taken (in Figure 18B), and there-
fore a new block 1824 containing data "Dprime” is alto-
cated for the active file system 1830. Thus, the active
file system 1830 comprises blocks 1812-1816 and
1820-1824 but does not contain block 1818 containing
data "D". However, block 1818 containing data "D" is not
overwritten because the WAFL system does not over-
write blocks on disk. The block 1818 is protected
against being overwritten by a snapshot bit that is set in
the bikmap entry for block 1818. Therefore, the snap-
shot 1822 still points to the unmodified block 1818 as
well as blocks 1812-1816 and 1820. The present inven-
tion, as illustrated in Figures 18A-18C, is unlike prior art
systems that create "clones™ of a file system where a
clone is a copy of all the blocks of an inode file on disk.
Thus, the entire contents of the prior art inode files are
duplicated requiring farge amounts (MB) of disk space
as well as requiring substantial time for disk VO opera-
tions.

[0097] As the active file system 1830 is modified in
Figure 18C, it uses more disk space because the file
system comprising blocks 1812-1820 is not overwritten.
In Figure 18C, block 1818 is illustrated as a direct block.
However, in an actual file system, block 1818 may be
pointed to by indirect block as well. Thus, when block
1818 is moditied and stored in a new disk location as
block 1824, the corresponding direct and indirect blocks
are also copied and assigned to the active file system
1830. :

[0098] Figure 19 is a_ diagram illustrating the
changes occurring in block 1824 of Figure 18C. Block

" 1824 of Figure 18C is represented within dotted line

1824 in Figure 19. Figure 19 illustrates several levels of

25

indirection for block 1824 of Figure 18C. The new block
1910 that is written to disk in Figure 18C is labeled 1910
in Figure 19. Because block 1824 comprises a data
block 1910 containing modified data that is referenced
by double indirection, two other blocks 1918 and 1926
are also modified. The pointer 1924 of single-indirect
block 1918 references new block 1910, therefore block
1918 must also be written to disk in a new location. Sim-
ilarly, pointer 1928 of indirect block 1926 is modified
because it points to block 1918. Therefore, as shown in
Figure 19, modifying a data block 1910 can cause sev-
eral indirect blocks 1918 and 1926 to be modified as
well. This requires blocks 1918 and 1926 to be written to
disk in a new location as well.

{0099) Because the direct and indirect blocks 1910,
1918 and 1926 of data block 1824 of Figure 18C have
changed and been written to a new location, the inode
in the inode file is written to a new block. The modified
block of the inode file is allocated a new block on disk
since data cannot be overwritten.

[0100]) As shown in Figure 19, block 1910 is pointed
to by indirect blocks 1926 and 1918, respectively. Thus
when block 1910 is modified and stored in a new disk
location, the comresponding direct and indirect blocks
are also copied and assigned 1o the active file system.
Thus, a number of data structures must be updated.
Changing direct block 1910 and indirection blocks 1918
and 1926 causes the bikmap file to be modified.

[0101] The key data structures for snapshots are
the blkmap entries where each entry has multiple bits
for a snapshot This enables a plurality of snapshots to
by created. A snapshot is a picture of a tree of blocks
that is the file system (1830 of Figure 18). As long as
new data is not written onto blocks of the snapshot, the
file system represented by the snapshot is not changed.
A snapshot is similar to a consistency point.

[0102] The file system of the present invention is
completely consistent as of the last time the fsinfo
blocks 1810 and 1870 were written. Therefore, if power
is interrupted to the system, upon restart the file system
1830 comes up in a consistent state. Because 8-32 MB
of disk space are used in typical prior art "clone” of a 1
GB tile system, clones are not conducive to consistency
points or snapshots as is the present invention.

[0103] Referring to Figure 22, two previous snap-
shots 2110A and 2110B exist on disk. At the instant
when a third snapshot is created, the root inode pointing
to the active file system is copied into the inode entry
2110C for the third snapshot in the inode file 2110. At
the same time in the consistency point that goes
through, a flag indicates that snapshot 3 has been cre-
ated. The entire file system is processed by checking if
BITO for each entry in the bllonap file is set (1) or
cleared (0). All the BITO values for each blkmap entry
are copied into the plane for snapshot three. When
completed, every active block 2110-2116 and 1207 in
the file system is in the snapshot at the instant it is
taken.

EP 0 702 815 B1

10

15

25

30

40

45

55

14

26

[01049] Blocks that have existed on disk continu-
ously for a given length of time are also present in cor-
responding snapshots 2110A-2110B preceding the
third snapshot 2110C. If a block has been in the file sys-
tem for a long enough period of time, it is present in all
the snapshots. Block 1207 is such a block. As shown in
Figure 22, block 1207 is referenced by inode 2210G of
the active inode fite, and indirectly by snapshots 1, 2
and 3.

[0105] The sequential order of snapshots does not
necessarily represent a chronological sequence of file
system copies. Each individual snapshot in a file system-
can be deleted at any given time, thereby making an
entry available for subsequent use. When BITO of a blk-
map entry that references the active file system is
cleared (indicating the block has been deleted from the
active file system), the block cannot be reused if any of
the snapshot reference bits are set. This is because the
block is part of a snapshot that is still in use. A block can
only be reused when all the bits in the bikmap entry are
set to zero.
Algorithm for Generati napsh

[0106]} Creating a snapshot is almost exactly like
creating a regular consistency point as shown in Figure
S. In step 510, all dirty inodes are marked as being in
the consistency point. In step 520, all regular files are
flushed to disk. In step 530, special files (i.e., the inode
file and the bilkmap file) are flushed to disk. In step 540,
the fsinfo blocks are flushed to disk. In step 550, all
inodes that were not in the consistency point are proc-
essed. Figure 5 is described above in detail. In fact, cre-
ating a smapshot is done as part of creating a
consistency point. The primary difference between cre-
ating a snapshot and a consistency point is that all
entries of the bikmap file have the active FS-bit copied
into the snapshot bit. The snapshot bit represents the
corresponding snapshot in order to protect the blocks in
the snapshot from being overwritten. The creation and
deletion of snapshot is performed in step 530 because
that is the only point where the file system is completely
self-consistent and about to go to disk.

[0107] Different steps are performed in step 530
then illustrated in Figure 6 for a consistency point when
a new snapshot is created. The steps are very similar to
those for a regular consistency point. Figure 7 is a flow
diagram illustrating the steps that step 530 comprises
for creating a snapshot. As described above, step 530
allocates disk space for the blkmap file and the inode file
and copies the active FS-bit into the snapshot bit that
represents the corresponding snapshot in order to pro-
tect the blocks in the snapshot from being overwritten.
{0108) In step 710, the inodes of the blkmap file and
the snapshot being created are pre-flushed to disk. In
addition to tlushing the mode of the blkmap file to a
block of the inode file (as in step 610 of Figure 6 for a
consistency point), the inode of the snapshot being cre-

27

ated is also flushed to a block of the inode file. This
ensures that the block of the inode file containing the
inode of the snapshot is dirty.

[0109] In step 720, every block in the blkmap file is
dirtied. In step 760 (described below), all entries in the
blkmap file are updated instead of just the entries in
dirty blocks. Thus, all blocks of the blkmap file must be
marked dirty here to ensure that step 730 write-allo-
cates disk space for them.

[0110] In step 730, disk space is allocated for all
dirty blocks in the inode and blkmap files. The dirty
blocks include the block in the inode file containing the
inode of the blkmap file, which is dirty, and the block
containing the inode for the new snapshot.

[ot111] In step 740, the contents of the root inode for
the file system are copied into the inode of the snapshot
in the inode file. At this time, every block that is part of
the new consistency poirt and that will be written to disk
has disk space allocated for it. Thus, duplicating the root
inode in the snapshot inode effectively copies the entire
active file system. The actual blocks that will be in the
snapshot are the same blocks of the active file system.
[0112]) In step 750, the inodes of the bilkanap file and
the snapshot are copied to into the inode file.

[0113) In step 760, entries in the blkmap file are
updated. In addition to copying the active FS-bit to the
CP-bit for the entries, the active FS-bit is also copied to
the snapshot bit corresponding to the new snapshot.
[0114]) In step 770, all dirty blocks in the blkmap and
inode files are written to disk.

[0115) Finally, at some time, snapshots themselves
are removed from the file system in step 760. A shap-
shot is removed from the file system by clearing its
snapshot inode entry in the inode file of the active file
system and clearing each bit corfresponding to the
snapshot number in every entry in the bikmap file. A
count is performed also of each bit for the snapshot in
all the blkmap entries that are cleared from a set value,
thereby providing a count of the blocks that are freed
(corresponding amount of disk space that is freed) by
deleting the snapshot. The system decides which snap-
shot to delete on the basis of the oldest snapshots.
Users can also choose to delete specified snapshots
manually.

[0116] The present invention limits the total number
of snapshots and keeps a bilanap file that has entries
with multiple bits for tracking the snapshots instead of
using pointers having a COW bit as in Episode. An
unused block has all zeroes for the bits in its blkmap file
entry. Over time, the BITO for the active file system is
usually turned on at some instant. Setting BITO identi-
fies the comresponding block as allocated in the active
file system. As indicated above, all snapshot bits are ini-
tially set to zero. If the active file bit is cleared before any
snapshot bits are set, the block is not present in any
snapshot stored on disk. Therefore, the block is immedi-

ately available for reallocation and cannot be recovered’

subsequently from a snapshot.

EP 0 702 815 B1

10

15

30

35

40

55

15

28

Generation of a Snapshot

[0117) As described previously, a snapshot is very
similar to a consistency point. Therefore, generation of a
snapshot is described with reference to the differences
between it and the generation of a consistency point
shown in Figures 17A-17L. Figures 21A-21F illustrates
the differences for generating a snapshot.

[0118] Figures 17A-17D illustrate the state of the
WAFL file system when a snapshot is begun. All dirty
modes are marked as being in the consistency point in
step 510 and regular files are flushed to disk in step
520. Thus, initial processing of a snapshot is identical to
that for a consistency point. Processing for a snapshot
differs in step 530 from tat for a consistency point. The
following describes processing of a snapshot according
to Figure 7.

[0119] The following description is for a second
snapshot of the WAFL file system. A first snapshot is
recorded in the blkmap entries of Figure 17C. As indi-
cated in entries 2324A-2324M, blocks 2304-2306,
2310-2320, and 2324 are contained in the first snap-
shot. All other snapshot bits (BIT1-BIT20) are assumed
to have values of 0 indicating that a corresponding
snapshot does not exist on disk. Figure 21A illustrates
the file system after steps 510 and 520 are completed.
{0120] In step 710, inodes 2308C and 2308D of
snapshot 2 and blkanap file 2344 are pre-flushed to disk.
This ensures that the block of the inode fite that is going
to contain the snapshot 2 inode is dirty. In Figure 218,
inodes 2308C and 2308D are pre-flushed for snapshot
2 and for blkmap file 2344.

[0121] In step 720, the entire blkmap file 2344 is
dirtied. This will cause the entire blkmap file 2344 to be
allocated disk space in step 730. In step 730, disk space
is allocated for dirty blocks 2308 and 2326 for inode file
2346 and blkmap file 2344 as shown in Figure 21C. This
is indicated by a triple asterisk (***) beside blocks 2308
and 2326. This is different from generating a consist-
ency point where disk space is allocated only for blocks
having entries that have changed in the blkmap file
2344 in step 620 of Figure 6. Blkmap file 2344 of Figure
21C comprises a single block 2324. However, when bik-
map file 2344 comprises more than one block, disk
space is allocated for all the blocks in step 730.

[0122] In step 740, the root inode for the new file
system is copied into inode 2308D for snapshot 2. In
step 750, the inodes 2308C and 2308D of blkmap file
2344 and snapshot 2 are flushed to disk as illustrated in
Figure 21D. The diagram illustrates that snapshot 2
inode 2308D references blocks 2304 and 2308 but not
block 2306.

[0123] In step 760, entries 2326A-2326L in block
2326 of the blkmap file 2344 are updated as illustrated
in Figure 21E. The diagram illustrates that the snapshot
2 bit (BIT2) is updated as well as the FS-BIT and CP-
BiT for each entry 2326A-2326L. Thus, blocks 2304,
2308-2312, 2316-2318, 2322, and 2326 are contained

29

in snapshot 2 whereas blocks 2306, 2314, 2320, and
2324 are not In step 770, the dirty blocks 2308 and
2326 are written to disk.

[0124]} Further processing of snapshot 2 is identical
to that for generation of a consistency point illustrated in
Figure S. In step 540, the two fsinfo blocks are flushed
to disk. Thus, Figure 21F represents the WAFL file sys-
tem in a consistent state after this step. Files 2340,
2342, 2344, and 2346 of the consistent file system, after
step 540 is completed, are indicated within dotted lines
in Figure 21F. In step 550, the consistency point is com-
pleted by processing inodes that were not in the consist-
ency point.

Access Time Qverwrites

[0125] Unix file systems must maintain an "access
time” (atime) in each irilode. Atime indicates the last time
that the tile was read. It is updated every time the file is
accessed.- Consequently, when a file is read the block
that contains the inode in the inode file is rewritten to
update the inode. This could be disadvantageous for
creating snapshots because, as a consequence, read-
ing a file could potentially use up disk space. Further,
reading all the files in the file system could cause the
entire inode file to be duplicated. The present invention
solves this problem.
[0126] Because of atime, a read could potentially
consume disk space since modifying an inode causes a
new block for the inode file to written on disk. Further, a
read operation could potentially fail if a file system is full
which is an abnormal condition for a file system to have
" oceur.
[0127] In general, data on disk is not overwritten in
the WAFL file system so as to protect data stored on
disk. The only exception to this rule is atime overwrites
for an inode as illustrated in Figures 23A-23B. When an
"atime overwrites™ occurs, the only data that is modified
in a block of the inode file is the atime of one or more of
the inodes it contains and the block is rewritten in the
same location. This is the only exception in the WAFL
system, otherwise new data is always written to new
disk locations.
[0128] In Figure 23A, the atimes 2423 and 2433 of
an inode 2422 in an old WAFL inode file block 2420 and
the snapshot inode 2432 that references block 2420 are
illustrated. Inode 2422 of block 2420 references direct
block 2410. The atime 2423 of inode 2422 is "4/30 9:15
PM" whereas the atime 2433 of snapshot inode 2432 is
"S/1 10:00 AM". Figure 23A illustrates the file system
before direct buffer 2410 is accessed.
[0129]} Figure 23B illustrates the inode 2422 of
direct block 2410 after direct block 2410 has been
accessed. As shown in the diagram, the access time
2423 of inode 2422 is overwritten with the access time
2433 of snapshot 2432 that references it. Thus, the
access time 2423 of inode 2422 for direct block 2410 is
"5/1 11:23 AM",

EP 0 702 815 Bt

15

25

35

40

45

50

16

30

[0130] Allowing inode file blocks to be overwritten
with new atimes produces a slight inconsistency in the
snapshot. The atime of a tile in a snapshot can actually
be later than the time that the snapshot was created. In
order to prevent users from detecting this inconsistency,
WAFL adjusts the atime of all files in a snapshot to the
time when the snapshot was actually created instead of
the time a file was last accessed. This snapshot time is
stored in the inode that describes the snapshot as a
whole. Thus, when accessed via the snapshot, the
access time 2423 for inode 2422 is always reported as
"5/1 10:00AM". This occurs both before the update
when it may be expected to be "4/30 9:15PM", and after
the update when it may be expected to be "5/1
11:23AM". When accessed through the active file sys-
temn, the times are reported as "4/30 9:15PM™ and "5/1
11:23AM" before and after the update, respectively.
[0131] In this manner, a method is disclosed for
maintaining a file system in a consistent state and for
creating read-only copies of the file systemn.

Claims

1. A method for generating a consistency point com-
prising the steps of:

marking (510) a plurality of inodes, an incde
being a file definition structure describing at
least one file in a file system, pointing to a plu-
rality of modified blocks in a file system as
being in a consistency point;

flushing (520) regular files and meta-data files
(530) to storage means;

flushing (540) at least one block of file system
information to said storage means; and
requeueing (550) any dirty inodes that were not
part of said consistency point.

2. The method of claim 1 wherein said step of flushing
said meta-data files to said storage means further
comprises the steps of:

pre-flushing (610) an inode for blockmap file to
an inode file; allocating (620) space on said
storage means for all dirty blocks in said inode
and said blockmap files;

flushing (630) said mode for said blockmap file
again;

updating (640) a plurality of entries in said
bloclkmap file wherein each entry of said plural-
ity of entries represents a block on said storage
means; and

writing (650) all dirty blocks in said blockmap
tile and said inode file to said storage means.

Patentanspriche

1. Verfahren zum Erzeugen eines Konsistenzpunkts,

31 EP 0 702 815 B1 32

umfassend die Schritte:

Markieren (510) einer Mehrzahl von Inoden,
wobei eine Inode eine Dateidefinitionsstruktur

expulser (540) au moins un bloc d'informations
de systéme de fichiers dans lesdits moyens de
mémeorisation, et

remettre en file d’attente (550) tout mode incor-

ist, die zumindest eine Datei in einem Dateisy- 5 rect qui ne faisait pas partie dudit point de
stem beschreibt, die auf mehrere modifizierte cohérence.
Blocke in einem Dateisystem verweist, als in
einem Konsistenzpunkt befindlich; Procédé selon la revendication 1, dans leque! ladite
étape consistant & expulser lesdits fichiers de
Raumen (520) regularer Dateien sowie Meta- 10 méta-données dans lesdits moyens de mémorisa-
dateien (530) auf eine Speichereinrichtung; tion comporte en outre les étapes consistant & :
Raumen (540) mindestens eines Blocks von pré-expulser (610) un inode d'un fichier de
Dateisysteminformation auf die Speicherein- représentation de blocs dans un fichier d'ino-
richtung; und 15 des,
allouer (620) un espace dans lesdits moyens
erneutes Einstellen (550) jeglicher berthrter de mémorisation & tous les blocs incorrects
Inoden, die nicht Teil des Konsistenzpunkts situés dans lesdits fichiers d'inodes et de
waren, in eine Warteschlange. représentation de blocs,
20 expulser a nouveau (630) ledit inode dudit
2. \Verfahren nach Anspruch 1, bei dem der Schritt des fichier de représentation de blocs,
Raumens von Metadateien auf die Speichereinrich- mettre A jour (640) une pluralité d’entrées dans
tung weiterhin folgende Schritte beinhaltet: ledit fichier de représentation de blocs dans
lequel chaque entrée de ladite pluralité
Vorraumen (610) einer Inode aus einer Block- 25 d'entrées représente un bloc dans lesdits
abbildungsdatei in eine Inodendatei; moyens de mémorisation, et
écrire (650) tous les blocs incorrects dans ledit
Zuweisen (620) von Platz auf der Speicherein- fichier de représentation de blocs et ledit fichier
richtung far samtliche berthrten Bl6cke in der d'inodes desdits moyens de mémorisation.
Inode und den Blockabbildungsdateien; 30
erneutes Raumen (630) der Inode fir die
Blockabbildungsdatei;
Aktualisieren (640) einer Mehrzahl von Eintra- 35
gen in der Blockabbildungsdatei, wobei jeder
Eintrag unter den mehreren Eintragen einen
Block auf der Speichereinrichtung reprasen-
tiert; und
40
Schreiben (650) samtlicher berGhrier Bldcke in
der Blockabbildungsdatei und der Inodendatei
auf die Speichereinrichtung.
Revendications 45

1. Procédé pour générer un point de cohérence com-
portant les étapes consistant & :

marquer (510) une pluralité d'inodes, un inode 50
étant une structure de définition de fichier
décrivant au moins un fichier dans un systéme

de fichiers, en pointant vers une pluralité de
blocs modifiés dans un systéme de fichiers
comme étant un point de cohérence, 55
expulser (520) des fichiers standards et des
fichiers de méta-données (530) dans des
moyens de mémorisation,

17

EP 0 702 815 B1

DATA
BLOCK

ORIGINAL

1104 ANODE

1}
cow ar~J

SET / g[

1108 N\ INDIRECT
COW BIT 110 BLOCK
CLEARED

1
e
124 f
1128
112
CLONE INDIRECT
1204 ANODE BLOCK
o ' ol
/_ al 122A
1208 N
120 122

PRIOR _ART

18

124

DATA
BLOCK

126

(o o e e e o e e e)

EP 0 702 815 Bt

WAFL INCORE 3712
INODE _~ 2048 _~2152 2/
222
™ 2501
~ 220
(2757 2378
2208 2224 \- 2504
_-2878 3448
230~ 40—
3448 3712
2304~ \- 2404
DIRTY INODE
AT 210 FIG. 2
’ ON-DISK
ON=DISK " INFORMATION 3104
INODE INCLUDING OWNER,
PERMISSIONS,
| ~ 0 ACCESS TIME. ETC.
16 BLOCK !
NUMBERS HAVING) .
SAME LEVEL OF . .
INDIRECTION 3108
L 75

19

~J310

EP 0 702 815 B1

INODE
3104
| 4-BYTES OF DAIA |
4-BYIES OF DAIA
64-BYTES
: > OF DATA
. 4108
410 —4=BYTES OF DATA]
LEVEL | DATA
INOD. BLOCK
J104 { } 4 KBYTES
| PIR 0
PIR 1 C 1o
3108 4 .
) . ™~ 4208
PR 15 . .
/ .

Ji10

™~ 420C

20

EP 0 702 815 Bt

LA 2 INDIRECT
INODE BLOCK
0
3104 !
PIR 0 .
PIR 1 .
3108 J . 1023
: 4
4304
[P® 15
/ 0
310 f
7023
/
4308
0
7
7023
FIG. 4C 7

430C

21

DATA
BLOCK
4 KB
4404
4408
™~ 440C

EP 0 702 815 Bt

8067 ~|

1069 ~{

808y

J0Ly

£20!

£201

J06% <~

a06p ~

206%

80c¥

£201

/

0

— V0.

Y089 —
o4

40078
v

x0078
19341ON
=J1NIS

l

0

X018

1238I0M
~3718n00

dv Ol
i
/
gl ¥ld |
X > 60If
J dld
0 dld
voIf
J0NT
£ AT

22

510~

MARK ALL “DIRTY"
INODES AS IN
CONSISTENCY

POINT

- FLUSH
REGULAR
FILES

FLUSH
META-DATA
FILES

J

FLUSH
FSINFO
BLOCK

550 ~

PROCESS INODES

THAT WERE NOT

IN CONSISTENCY
POINT

FIG. 5

23

EP 0 702 815 B1

610~

PRE-FLUSH THE
INODE OF THE
BLKMAP FILE

WRITE-ALLOCATE
DISK SPACE FOR
AlLL DIRTY BLOCKS

630"

FLUSH THE
INODE FOR THE
BLKMAP FILE

|

640\

UPDATE ENTRIES
IN BLKMAP
FILE

WRITE DIRTY
BLOCKS IN

BLKMAP AND

INODE FILES
70 DISK

—— - - —— - —— - ——— - - -

e e s e e e o e e e e e e e o e o e e

——— . o

EP 0 702 815 B1

—— —— — —— ——— — o — - ——

PRE-FLUSH THE
INODES OF THE
BLKMAP FILE
AND THE
SNAPSHOT

OIRTY EVERY
BLOCK IN THE
BLKMAP FILE

WRITE-ALLOCATE
DISK SPACE FOR
ALL DIRTY BLOCKS

COPY ROOT
INODE OF FILE

SYSTEM INTO
SNAPSHOT INODE

FLUSH THE
INODE FOR THE
BLKMAP FILE
AND SNAPSHOT

UPDATE ENIRIES IN|
BLKMAP FILE BY
COPYING FS-Bn
INTO CP-BIT AND
SNAPSHOT BIT

WRITE DIRTY
BLOCKS IN

BLKMAP AND

INODE FILES
70 DISK

24

EP 0702 815 B1

INCORE
Lot INFORMATION 620C
OBt INCLUDING DIRTY FLAG,
IN-CP FLAG, LINKED
WAFL BUFFER UST POINTER(S)
DATA' STRUCTURE
8204 D
PIR O
PIR 1
16 POINTERS HAVING
SAME LEVEL OF < © =
NDIRECTION 8208 | © o :
[P 13

ON-DISK
820 INODE 310

25

EP 0 702 815 B1

LEVEL O
- INopE 104,
3108,
4 8204
4-6YTES OF DAIA
4-8YTES OF DATA
64—-8YTES
. OF DATA
. 9208
820 - \A=BYTES OF DAIA} J
LEVEL 1 DATA (DIRECT)
INODE BUFFER
J104,
8204 }4 BYTES
PIR 0
8208 < :
) : ~~- 9228
[PIR 15 . .
4 :
820

™~ 922¢

26

LEVEL 2
INO,
J104,
J108,
8204
PIR 0
PIR 1
8208 < .
_PIR 15
7
82
FIG. 9C

EP 0702 815 Bt

DATA
INDIRECT BUFFER
BUFFER - } 4 KB
g 9404
N~ 9408

4 N~ 940C

1023

93oc

27

EP 0702 815 B1

1066

8086

£20!

o

J066

8066

Y066 =~

ey

y34n8

vIv0

4

0

¥314408

1934I0NI-T1ONIS

€201 Qm QE
]
0
g0L6
\ .
£701 028
” ol dld_])
k AN
L : 8028
/
voL6 |_dld
0 dld
20! Weg
‘901
: YoIf
. JGONT
] m
0
14408

193410M-3718000

28

EP 0 702 815 B1

$0!
emecmnnmennn [
." !
_. |
\ | eaung \ A\
"_ gy vr£0! m
]
A 801 ____J
. zZc0!
S 87
| |
! _“
|| vang W\
" ax s ¥Z£0!
1]
.1
B s |
1]
“ “
| | .
V| 438 \ ."
“ ax r yogo! |
| I
i
—— oo)
Sy144N8 VM 0£01

193410

—— -y

$201 7
2201 =)
|
]
|
|
"
SA !
SN |- 20201
X018 voz0!
XSI0-NO #201 \
oy ¢ TS
SET \ 43408
434408 NS
UH-#20! §34408 M
gy b
............. 80000 .-
SY3LE LoV
LOTION!

0104
o 000!
XSI0=NO
S3INIOd
¥3418 9!
ETTTS
s 1 (= 20104
80101
oMM

IYOONI 1VH

o
00N - 10!

29

EP 0 702 815 Bt

’ BLKMAP
_____________ HFLE
BLKMAP ! L 11104
Ry L Id
11108="
~-1110C
11100
1110
) SNAPSHOT BITS (BIT 1 - BIT 20)
CcP-BIT . 11104
r N
(Br 311 830 [6T 291 8T 28] --- | BT 31 BT 2] 67 71871 0]
\ J
g
UPPER 11 BITS (BIT 21 - BIT 31) FS=6IT
ARE RESERVED

II/IUA
o T 0 1T 01 0 J1---1 0 1 0 1 0 1 01
LN J
Y
FREE BLOCK
FIG. 11C
11104
BIT 0
Lo I o 1 o 1 o0 1.1 0o o | o 1 11
w /
Y]
BLOCK IN FS-8IT

F/G. 7 7 D ACTIVE FILE SYSTEM

30

EP 0 702 815 Bt

INODE |
12104 ~N AL 1210
INCORE \
(ON-DISK)
INODE
820 (310)
12108 "] 4 KB
\- BUFFER 1220
. (BLOCK)
e
1210C)
zzzdof
120106~ FIG 12
;/-
—
1201F =
1410
14124 14128 //
4 3
FIXED DIRECTORY
LENG?H{ m POINTER
ENTRY |
1412 -j . & 14104
1414 ~ T J
VARIABLE
LENGTH “DIRECTORY_ABC™ =1
ENTRY
1416 . > 14108
) J

1418 I

31

EP 0 702 815 Bt

15/39
FIG. 134 ,ow
FILE
13104 ~ 32 } 8-B8ITS
13108 - S
1310¢ - 0
1310
1340 INODE
fUE
0 h
INOMAP e !
2 S : " BLOCK
13504 5% b 13404 .
13508] 2 S 37 J
. T
13408
1350) 9 ~..
1350 RN
1340¢ -

32

EP 0 702 815 Bt

FSINFO
BLOCK
-
15100 ~——HEcksum
15100 | CENERATION COUNT| . MISCELLANEOUS
DATA 15104
<
i INODE OF
: . INOOE FILE
. 15108
5 ’
1510 FIG. 15
__ ,
23068 ~_, !
| _-23064 5
'
CP FLAG 1 CP FLAG
5 2391 5 | -2392
i LIST 2390 OF
F/G 7 7 A INODES WITH
. DIRTY BUFFERS
e —
: 23064
; é 23068 -
i 7 | ~2391 2392 7
LIST 2390 OF f
INODES WITH
DIRTY BUFFERS FIG. 17/

33

EP 0 702 815 B1

pommmmmmemmmmmSmmSSSSSos—o—oooooossoSSoooomEToEmoEoTEmmmTTTT -
L1612 3 FSINFO 1610 FSINFO 5
: - 16124 :|
: DATA 16104 :
: t
E - 16128 ;
: INODE 1610A OF
‘: . INODE FILE 1620 }
: - :
]]
: i
| yid 1630 %
'a |
[])
} INODE 16204 BLKMWAP FLE |
L OF BLKMAP " :
: FILE 1630 . !
a |
} INODE 16208 - 1640 ':
: F INOMAP : :
e 1640 . INOMAP FILE i
] . 1
\ NODE 1620C ’.
: OF RoOOT 1650 ';
; DIRECTORY . ;
; 1650 OF . :
e SysTem ROOT DIRECTORY |
| : |
i |- 16200 '560 E
V] i
: PLURALITY :
' OF INODES : DYPICAL FILE |
' FOR FIES : R_DIRECTORY
} IN THE . !
] I - T
E K_./.‘—"\ E ’

: . 1620 FILE SYSTEM 1670

] I i

EP 0 702 815 B1

|

$067 | |
%0018
s |

L

494
34 300M

g/1 "9l
G0N
1004

O£ yoptg
0INIS4

EP 0 702 815 B1

_JpJ

—

1444

[....! W_\%a
) | —a90¢2
PEC .\‘%%N
17 S
| |
w062 | | |
%0078
gy || _
I
sav'
714 300N

o1 Ol
300N
100¥

T oo
04NISS

36

EP 0 702 815 B1

8T 31 8ri1 BTo
(CP-BIT) (FS-81T)
2304 ~ 7 P 7 L ~2324A
2306 ~J i . . . 7 ; /‘2.3'243j
2306~ A 0 0 12324C
2370~ 7 . ..] T V23240
2312~ 7 . . 1 7 V2524E
2314~ — 7 T -2324F
2316~ P 7 7 V23246
2308~] P— 7 T V2324H 4 KB
2320~ - ——— 23241 - BLOCK
2322~ P 0 0 V23240 2324
2324~ e] 2324k
2326 ~ 0 o . 0 0 V23241
2328 ~] 0 PR 0 7] L ~2324M
T — o
8T 31 8ri: BTO0
BLOCK f (CP"B/U (S-B/T)
2304 =—{ 7 ... 7 723264
2306 =i 0 -] 0 V23268
2308 e | 7 . o0 0 , /'23266
2310 ={ 7 - 7 ;{25260
2312 ~w—ed 7 ... 7 7 Vp2326E
2314 0 . .. 7 0 V2326F
2316 == | <. . 7 1 V29266
2318 ——ed 7 T j 72261 | 4 KB
2320 e 7 ... 0 T 2326/ 2326
2324 == 0 - .- 7 0__V2J26K
2326 ~—ei | . .. 0 T |2326L
2328 —o—ed PN
e *_.—=f ——em—
o — .

FIG. 17J

37

EP 0 702 815 B1

oz A T
ad

0ie

I

. . Wil
.| —omose
| G802
v el (014
[l...., ,E. 90£2
: 052
-_\.8
4244 8902
o
_ |
vcz | | _
X074
&t || _
L]
92

IS 300N

3/

N5}

J00N
100¥

20£e

* X018
0INISS

EP 0 702 815 B1

441 Ol

- 34 300N

N
L N
$267
g7 - - .
oz A = | .| o
417 e
oeke / 6052
77
2 &.\T 7L v Y4
| _
. i ﬁ: “ J_ 9082
— , 29057
28 VVM:N .I\II
71 A W v
e — oz
pic7 "1 non | ;
orsz 1A —— | JaoN!
_\ g)94 _ _ 1004
2167 . #0078 _ _
&
” .
SQ\T
L E— 20627 yoo7g
mﬁ.ul 0INIS

39

EP 0 702 815 Bt

124 YA

_lp_l

vé

2
A4 L

L4

rife

1124 .ﬁt\ﬁl

life

Q:,N.\—\

L

805
¢ . ..\-
. 9802
4414 r\.mea
e
11394 _——VR0£C
[—— | 902
¢ n _
| | ~o90ee
4414 890€2
/1A S
| |
ez | | _
X079
oy || _
e
9962

74 300N

/1

Il

Jaon
100y

41,94

40078
0INISS

EP 0702 815 Bt

sz =17
ossz 319)]

cise

SQ_\ Y

x|

]

L —

g0c2
124 .
. 280¢2
VA
——o80cz
i o0tz
[| —0r2
(4 “ _
X 290¢2
44Y4 ‘\.%%N
VA S
| |
ez | | |
¥08 <
oy | | _
]

_

9pez m o
714 3000

H/L "9l
J0ONT
1008

20627 yonig
OIS

a1

EP 0 702 815 B1

AL Ol

[Yivdd
ez | r |
iwm N
L. — v4
I._ e . r\n
7662 31 A :
4 . 28052
QNQ\W w1
8805z
: 57
gl hN\T 114V veote
sR-_ﬁ. a [l..l H\.@R
— - : | 2905z
s e
e I Zhie A8k
. - 0pEC Y YI0EC
pieg "L
.*\ g YA * _ 100¥
Z2If2 : 4007 _ |
gy b
- .
E,N\T
L L] 20527 yaomm

294 w 0INISS
4 00N

42

EP 0 702 815 B1

—

.I..J see

4
3l

L\QNM 4

dvyig L

v d

1AY4

2v5z 31571
gigz _L

wsnw.\V\

"

I4AYA

e
p102 "]

\\ﬁcu
0r£¢ 3l
e

cife

Qkhw.\v\

L

— o T 8082
\r%n
i
— a.u_\.T.gn
:”R | A-250¢2
v o

pofg | |
%078
v ||

L

9l
374 300N

141

Il

242

G0N
1004

2082~

X078
0INISS

43

FIG.

INODE 18104
OR INODE FILE

e e— —m—e ——— — —— —— v——— ——

18A

EP 0 702 815 B1

S 1810

FSINFO
BLOCK

(1810

FSINFO
BLOCK

r———

INODE 18104
OR INODE FILE {
—
|
|
|
|
!

FIG. 18C

INODE 18104
OR INODE FILE

EP 0 702 815 Bt

(1810

FSINFO
BLOCK

—— — — —

|
|

SNAPSHOT
INODE |

45

EP 0 702 815 B1

- G D > P . S G A Gt A it S . s Sl o G o AD A S e S S G A A T S S . . RS A -

1]
! N !
1 ~ \ '
N
" /M.lu ~ s Q x “
| -~) |
“ 8ol
| 235!
X bt
2 [] m t
e
= S < |
(| o
" T =
" N o -/
“ A~ o-o“Tﬁ/J.‘/_’m PR "
f HEH = 73_
” N >
1
5 —mwd
b« S _
I N O I
“ /m e ettt ’
! 1)
_l.\ -
| eyt ! ©
NN J%“ L/
.OF ¢ o0 Zw ¢ o0 o
_“ /“ m ! Y]
by) \“ Q
1! 4.)
tLy~=d
!)
.j’) o & @
| FR Yo]
FM N\
H N Q -
Ly Q= o o 0 wzm
ww N . ~
WW N

T

DIR,

BLOCKS

SINGLE—

/

DOUBLE-

INDIRECT

BLOCKS

BLOCKS

19

FIG.

46

18104 {

1870D {

1810A {

18700 {

FSINFO
BLOCK 1810

EP 0 702 815 B1

0

|~ 1810D-

rOOT
. INODE

FSINFO
BLOCK 1870

-~ 1870D

ROOT
INODE

FSINFO
BLOCK 1810

!

- 18100

rROOT
INODE

FSINFO
BLOCK 1870

|~ 1870D

rOOT
INODE

47

FIG. 20A

—————

~,————

FIG. 208

o ———

-
T e

EP 0702 815 B1

FSINFO
BLOCK 1810
7 -~ 18100
Roor e
18104 { INODE T .
/ FILE \\\
FSINFD | SysTEM)
BLOCK 1870 \ 1830 /'
T _~ 18700
Roor
18700 {
INODE
FIG. 20C
SNAPSHOT 2 BIT
B8Ir 31 BT2 BT1i1 BTO
slock § (CP-61) (F5-8IT)
2504 et ! > o 1 1 7 Yy2I26A
2306 == 0 s 0 7 0 V23268
2308 —=—= ! oo ! 0 7 V2326C
2310 ~—=1 | ... 1 1 7 V23260
2314 ==t 0 oo 0 [0 2326F
2316 ~=——=y 1| > e [}] 7 V23266 ‘18
2320 =0 X 0 j 123261 - BLOCK
2322 ~a—end ! iy 1 0 7 V2326 2326
2324 == 0 > .- 0 ! 0 V2326K
2326 ~—={ 1 > e 1 0 T V2I26L
2328 =t PR
— |)

FIG. 21E

EP O 702 815 B1

vic "9l

80c2
' m \\l§R§§$§§3
28062
v
YA
V052
j:!;IHH\8R
¢ .
: | —~o9052
114
T
| | ETY]
$EZ | | _ 100§
29018
et | | _
L | W67 yoorg
04NISS

oz §
314 300N

49

EP 0 702 815 B1

qic 9l

px)

J

0r§C 3714~ _ |

zisr AL

8

oige

4

L

g0cz
' . l\l
: \%%N 00N 2 JOHSIWS
28062
- “%%N
i P 1114
_wn — u\én
X _\.%%N
14414 §90£Z
1A
| | T00NT
$0e2 | | | 1008 |
X078
et || _
-] W27 yaomg
OINSS

gz
314 300N

EP 0702 815 Bt

e

(A4

IYARNE|

94
o0 . 1\|
. .\%&. ¢ J00N! ¢ 10HSIWNS
3007 1005 |~ 28012
b7
T \lmmch /4
_|.| : H“\m%m
. 29062
P95 "
— g0z
037 YA
| | 300N
YA _ _ 100y
X078
ey || _
L= 0 yoprg
0INIS

94z m o
719 300N

51

EP 0 702 815 B1

v

px)

J

o¥£e 31t \ﬁl |

cife

§

0if¢

I

/ﬁ 2494
l_ ,

aiz ol

VA e

waw%a e ﬁl%ﬁ.

IV S e W

1144 — vR007

J— — 9052

i Y/l%ﬁ

Zhe? \\.ﬁl%ﬁ

[1)4Y4 ~ 0007

w0rz | | |
Y008
|| _\

| 2082

9z m o
714 300N

080£¢ 300N Z LOHSIWNS

300N
1004

X078
0INISS

52

EP 0 702 815 Bt

...I_ e

74%4

%

S_]

0rEC 374

had

QNnN.\r\

L

4L Ol

B I.”n.n l\lnlrlﬁ
e N
v R B S
[114Y4 _ ~ V007
- — — 9057
vv.m.N L\“Il r~—J90€2
231z u\ﬁl%%w
0pEC ~— Y9052
T |
»0£Z | |
X078 _
s ||
B 202

9#£C
N5 300N

.ull»!pl_

080£C 300N ¢ LOHSAYNS

JA0N!
1004

X018
OINISS

EP 0 702 815 B1

FSINEQ FSINFO 210
BLOCK 2104 3 BLOCK SNAPSHOT
INODE FILES /‘/ 2 1227
| BuauP
{ { 2124 FLE
21020 \ \ INOWAP
02 o
1207 \’2\, oo | RooT
NODE DIRECTORY
. ALE CZizs
SNAPSHOT 1 R
INODE 21104 / 2130
SNAPSHOT 2
INODE 21108
SNAPSHOT 3 — 1 21304
INODE 2110C \
. | - 2140
BLKMAP 1207 P
INODE 2110D T
INOMAP
ACTIVE 2112
INODE 2110E suomaP ALeY”
ROOT DIRECTORY
2110F | 2114
] INOMAP
ROOT | -2116
FILE INODE 1207 DIRECTORY
21106)
, FILE
1207~ !
— N\ ACTVE
FIG. 22 FILE SYSTEM

INODE FILE 2110

EP 0 702 815 B1

vee Old

]\l
07v2 |
01%2
\ $2b2
SYIUNIOd 91
474
N §5320V WYGL6 0F/b
X018 34
300N v
X078 1M

193419

1434
SYIINIOd 91
724 004 1/
JOON
0r¥c

cEve 300N
JOHSAVNS

£
N §S320V

X018
0INISS

55

gcc 94

0182
e

5

o y282

5 SYINIOd 9!

[=]

: po 00T 1/

I SSTON
Y0078 1M
19340
X009 J00M
T 070

£

S
A
44 4
300N e /4
SYIUINIOd 91 2062 300N
JOHSIWS
A mooo!r 1/
£082 \
L 5S300V
1 A
X018

04NISH

56

	2001-07-02 Foreign Reference

